Кожна бічна грань чотирикутної піраміди, в основі якої лежить квадрат, нахилена до основи під кутом 60° · Площа основи піраміди 16 см2. Знайдіть площу бічної поверхні піраміди.
Очень простая задача. Пусть EM пересекает AB в точке K. Тогда ∠MED = ∠BEK; ∠BEK = ∠BAE; (стороны углов перпендикулярны) ∠BAE = ∠EDC; (вписанные углы, оба опираются на дугу CB) => ΔEMD - равнобедренный; EM = MD; На гипотенузе прямоугольного ΔCED есть только одна точка, равноудаленная от вершины прямого угла и вершины острого - её середина. а) доказано. б) Если ∠CDB = 60°; то ∠EAB = 60°; AE = AB*cos(60°) = 2; ED^2 = AD^2 - AE^2 = 60; ED = √60; Само собой, ED = EM, так как ΔEMD в данном случае равносторонний (все углы 60°);
Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора.
ОН= а\2
Пусть EM пересекает AB в точке K.
Тогда
∠MED = ∠BEK;
∠BEK = ∠BAE; (стороны углов перпендикулярны)
∠BAE = ∠EDC; (вписанные углы, оба опираются на дугу CB)
=> ΔEMD - равнобедренный; EM = MD;
На гипотенузе прямоугольного ΔCED есть только одна точка, равноудаленная от вершины прямого угла и вершины острого - её середина.
а) доказано.
б) Если ∠CDB = 60°; то ∠EAB = 60°;
AE = AB*cos(60°) = 2;
ED^2 = AD^2 - AE^2 = 60; ED = √60;
Само собой, ED = EM, так как ΔEMD в данном случае равносторонний (все углы 60°);