Объяснение:
Рассмотрим 2 случая. Пусть АВ, АС будут боковыми сторонами треугольника, тогда сторона ВС будет основанием.
1 случай:
Пусть основание треугольника будет 8 см, тогда боковая сторона будет 6 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 6 см. Тогда:
Раbc = АВ + АС + ВС = 6 + 6 + 8 = 12 + 8 = 20 см.
2 случай:
Пусть основание треугольника будет 6 см, тогда боковая сторона будет 8 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 8 см. Тогда:
Раbc = АВ + АС + ВС = 8 + 8 + 6 = 16 + 6 = 22 см.
Вектор АВ{Xb-Xa;Yb-Ya} или AB{-2;2}. |AB|=√(-2²+2²)=2√2.
Вектор ВC{Xc-Xb;Yc-Yb} или BC{3;3}. |AB|=√(3²+3²)=3√2.
Вектор CD{Xd-Xc;Yd-Yc} или CD{2;-2}. |AB|=√(2²+(-2²))=2√2.
Вектор АD{Xd-Xa;Yd-Ya} или AD{3;3}. |AB|=√(3²+3²)=3√2.
Итак, противоположные стороны четырехугольника равны.
Проверим углы.
CosA=(Xab*Xad+Yab*Yad)/|AB|*|AD| = (-6+6)/|AB|*|AD| =0,
Значит <A=90°
CosB=(Xab*Xbc+Yab*Ybc)/|AB|*|BC| = (-6+6)/|AB|*|BC| =0,
Значит <B=90°.
Следовательно, четырехугольник ABCD - прямоугольник, что и требовалось доказать.
Объяснение:
Рассмотрим 2 случая. Пусть АВ, АС будут боковыми сторонами треугольника, тогда сторона ВС будет основанием.
1 случай:
Пусть основание треугольника будет 8 см, тогда боковая сторона будет 6 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 6 см. Тогда:
Раbc = АВ + АС + ВС = 6 + 6 + 8 = 12 + 8 = 20 см.
2 случай:
Пусть основание треугольника будет 6 см, тогда боковая сторона будет 8 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 8 см. Тогда:
Раbc = АВ + АС + ВС = 8 + 8 + 6 = 16 + 6 = 22 см.