А)сечение EFGH строим в плоскости АВС прямую FG проходящую через О параллельно АВ строим в плоскости SCK прямую OL проходящую через О параллельно SC получаем точку L cтроим в плоскости ASB через точку L прямую ЕН параллельно АВ соединяем точкм EHGF получаем сечение
б)точка пересечения медиан делит их в отношении 2 к 1 ОС относится к КО =2/1 треугольники FСG и AСB подобны FG/AB=2/3 FG=(2AB)/3=(2a)/3 OL параллельна SC SL/LK=2/1 треугольники SEH и SAB подобны EH/AB=2/3 EH=(2a)/3 SH/HB=GC/GB=2/1 HG=SС/3=b/3 также EF=b/3 P=EH+HG+FG+EF=((2a)/3)+((2a)/3)+(b/3)+(b/3)=(2(2a+b))/3
Диагонали пересекаются в точке О. Благодаря свойству трапеции ΔАОВ=ΔСОД, а тр-ки ВОС и АОД подобны. Их коэффициент подобия: k²=S/s=54/6=9 ⇒ k=3. Пусть ВО=х, СО=у, тогда ДО=3х, АО=3у. α - угол между диагоналями, его синус одинаковый для всех треугольников, образованных пересекающимися диагоналями. Сумма тр-ков АОВ и СОД: S1=(х·3у·sinα+3х·у·sinα)/2=(6xy·sinα)/2. Сумма тр-ков ВОС и АОД: S2=(х·у·sinα+3x·3y·sinα)/2=(10xy·sinα)/2. S1/S2=6/10=3/5. По условию S2=6+54=60, значит S1=3·S2/5=36. ΔАОВ=ΔСОД=36/2=18 (ед²).
строим в плоскости АВС прямую FG проходящую через О параллельно АВ
строим в плоскости SCK прямую OL проходящую через О параллельно SC
получаем точку L
cтроим в плоскости ASB через точку L прямую ЕН параллельно АВ
соединяем точкм EHGF получаем сечение
б)точка пересечения медиан делит их в отношении 2 к 1
ОС относится к КО =2/1
треугольники FСG и AСB подобны
FG/AB=2/3
FG=(2AB)/3=(2a)/3
OL параллельна SC
SL/LK=2/1
треугольники SEH и SAB подобны
EH/AB=2/3
EH=(2a)/3
SH/HB=GC/GB=2/1
HG=SС/3=b/3
также EF=b/3
P=EH+HG+FG+EF=((2a)/3)+((2a)/3)+(b/3)+(b/3)=(2(2a+b))/3
Благодаря свойству трапеции ΔАОВ=ΔСОД, а тр-ки ВОС и АОД подобны. Их коэффициент подобия: k²=S/s=54/6=9 ⇒ k=3.
Пусть ВО=х, СО=у, тогда ДО=3х, АО=3у.
α - угол между диагоналями, его синус одинаковый для всех треугольников, образованных пересекающимися диагоналями.
Сумма тр-ков АОВ и СОД:
S1=(х·3у·sinα+3х·у·sinα)/2=(6xy·sinα)/2.
Сумма тр-ков ВОС и АОД:
S2=(х·у·sinα+3x·3y·sinα)/2=(10xy·sinα)/2.
S1/S2=6/10=3/5.
По условию S2=6+54=60, значит S1=3·S2/5=36.
ΔАОВ=ΔСОД=36/2=18 (ед²).