В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Круг вписан в равнобедренную трапецию.
Доказать, что отношение площади круга к площади трапеции равно отношению длины окружности к периметру трапеции.

Показать ответ
Ответ:
22222222227
22222222227
14.10.2020 12:37

Пусть P – периметр трапеции, R – радиус круга. Тогда средняя линия трапеции равна P/4, а площадь –  P/4·2R = PR/2.  Площадь круга равна πR². Следовательно, искомое отношение площадей равно  P : 2πR.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота