Круг, вписанный в равносторонний треугольник, разделяет одну из его боковых стенок на два сегмента, длиной 5 см и 4 см, считая от основания в точке соприкосновения. Найдите периметр треугольника
1) Докажем, что данный четырёхугольник является прямоугольником.
Согласно условию задачи:
углы при нижнем основании - прямые;
4 угла при верхнем основании равны между собой и равны:
180 : 4 = 45°, в силу чего наклонные прямые являются биссектрисами верхних углов, а каждый из них равен:
45 + 45 = 90°.
В прямоугольнике противоположные стороны равны.
Следовательно, нижнее основание четырёхугольника равно 11.
2) Биссектрисы прямых углов делят их на 2 равных угла, каждый по 45°; следовательно, треугольники, прилегающие к боковым сторонам, является равнобедренными, и их нижние стороны равны 6.
3) Общая длина оснований этих треугольников составляет:
6 + 6 = 12
4) Полагая, что точки х и у, принадлежат нижней стороне прямоугольника, найдём расстояние между ними:
Теорема: перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Согласно теореме о перпендикуляре, опущенном из вершины прямого угла на гипотенузу, составим пропорцию и найдём АВ:
АВ : АС = АС : АD
Откуда (произведение средних равно произведению крайних):
1
Объяснение:
1) Докажем, что данный четырёхугольник является прямоугольником.
Согласно условию задачи:
углы при нижнем основании - прямые;
4 угла при верхнем основании равны между собой и равны:
180 : 4 = 45°, в силу чего наклонные прямые являются биссектрисами верхних углов, а каждый из них равен:
45 + 45 = 90°.
В прямоугольнике противоположные стороны равны.
Следовательно, нижнее основание четырёхугольника равно 11.
2) Биссектрисы прямых углов делят их на 2 равных угла, каждый по 45°; следовательно, треугольники, прилегающие к боковым сторонам, является равнобедренными, и их нижние стороны равны 6.
3) Общая длина оснований этих треугольников составляет:
6 + 6 = 12
4) Полагая, что точки х и у, принадлежат нижней стороне прямоугольника, найдём расстояние между ними:
12 - 11 = 1
ответ: 1
75 см
Объяснение:
Теорема: перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Согласно теореме о перпендикуляре, опущенном из вершины прямого угла на гипотенузу, составим пропорцию и найдём АВ:
АВ : АС = АС : АD
Откуда (произведение средних равно произведению крайних):
АС² = АВ · АD
АВ = АС² : AD
АВ = 15² : 3 = 225 : 3 = 75 см
ответ: АВ = 75 см