Кто что может решить: 1)чему равнее объем правильной шестиугольной призмы со стороной основания а длиной большей диагонали (призмы) с? 2)найдите объем параллепипеда, если его основание имеет стороны 3м и 4м и угол
между ними 30(градусов), а одна из диагоналей образует с плоскостью основания уго 30(градусов). 3)найдите объем пирамиды, в основании которой лежит параллелограмм со сторонами 2 и (под корнем 3) и угол между ними
30(градусов), если высота пирамиды равна меньшей диагонали основания.
1) Дано: шестиугольная призма ABCDEFA1B1C1D1E1F1
AB = a, AD1 = c.
Найти: V призмы.
Решение: 1) V = S * h, следовательно, сначала ищем площадь основания.
2) S = a2 корней из трёх на два (формулу смотрим в справочнике или в интернете, где попадётся, выводить самим долго и необязательно - нас об этом никто не просит =))
3) Теперь ищем высоту. Всё просто:
Наибольшая высота - AD1. треугольник AD1D - прямоугольный. AD1^2 = AD^2 + DD1^2
c^2 = (2R)^2 + h^2
В правильном шестиугольнике R=a, поэтому
h^2 = c^2 - 4a^2
h = кореньквадратныйиз(c^2-4a^2)
4) V = a^2 корней из трех на два * кореньквадратныйиз(c^2-4a^2) =
Третья задача:
Дано: пирамида SABCD
AD = 2, AB = корень из трёх;
угол A = 30 градусов
BD = h
Найти: Объём пирамиды.
Решение: 1) V = 1/3 S*h
2) S = sin A * AB * AD = sin 30 * корень из трех * 2 = 1/2 * 2 * корень из трёх = корень из трёх
3) По теореме косинусов в треугольнике ABD находим BD
BD^2 = AB^2 + AD^2 - 2cos30 * AB* AD
BD^2 = 3 + 4 - 2 * корень из трёх на два * корень из трёх * 2
BD^2 = 7 - 6 = 1
BD = h = 1
4) V = 1/3 * корень из трёх * 1 = корень из трёх на три. Это и есть объём)