a) В основании АВС проведём высоту АЕ ⊥ ВС. АЕ = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Угол между прямой SA и плоскостью АВС есть угол SAO
b) В основании АВС проведём высоту BK ⊥ AС. BK = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Проведём в грани SAC апофему SK = 0,5а√3
Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей SAC и АВС
Поскольку тетраэдр правильный, то углы между любой боковой плоскостью и плоскостью основания равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.
Объяснение:
Смотри прикреплённый рисунок.
Пусть а = 8 см - ребро тетраэдра
a) В основании АВС проведём высоту АЕ ⊥ ВС. АЕ = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Угол между прямой SA и плоскостью АВС есть угол SAO
b) В основании АВС проведём высоту BK ⊥ AС. BK = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Проведём в грани SAC апофему SK = 0,5а√3
Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей SAC и АВС
Поскольку тетраэдр правильный, то углы между любой боковой плоскостью и плоскостью основания равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.
1. Противолежащий этому острому углу катет равен 20*0.6=12
а другой катет равен произведению гипотенузы 20 на косинус этого угла √(1-0.36)=√0.64=0.8; получаем 20*0.8=16
проверяем по теореме Пифагора: сумма квадратов катетов 12²+16²=144+256=400, гипотенуза равна √400=20. Значит, задача решена верно.
2. по одному из основных тригонометрических тождеств 1+ctg²∠A=1/(sin²∠A)
sin∠A=√(1/(1+(9/16))=4/5
cos∠A=√(1-16/25)=3/5
прилежащий к углу А катет равен произведению гипотенузы АВ на косинус угла А, т.е 5*3/5=3/см/
площадь равна 0.5*5(4/5)*3=6/см²/
Ее можно было посчитать и как половину произведения катетов, т.е. 3*√(25-9)/2=3*4/2=6/см²/; второй катет нашел по теореме Пифагора.