Через диагональ основания АС правильной четырехугольной призмы (основание - квадрат) параллельно диагонали B1D призмы проведено сечение АРС. Сечение - равнобедренный треугольник с высотой ОР, параллельной диагонали B1D. АС = 2√2, Sapc=2√3 (дано).
Sapc=(1/2)*AC*PO => PO=2*S/AC = √6. Треугольники BB1D и BPO подобны, так как РО параллельна B1D, а BD=2*ВО (точка О пересечения диагоналей квадрата делит их пополам). Значит коэффициент подобия итреугольников равен 2 и диагональ призмы B1D равна РО*2 = 2√6.
Пусть х - одна частьТогда один из катетов - это 5х, другой - 6хсоставим уравнение25x² + 36x² = 1464161x² = 14641x²=14641/61x=√14641/61=121/√61 Тогда один катет будет 605/√61, второй катет - 726/√61Теперь найдем отрезки. Так как из прямого угла проведена к гипотенузе высота, то катет прямоугольного треугольника есть среднее проворциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла пусть один из отрезков гипотенузы = а Второй отрезок = bГипотенуза - с берем первый катет и первый отрезок(605/√61)² = с * а (605/√61)² = 121а 366025/61 = 121а а = 3025/61 найдем b. По аналогии: (726/√61)² = с * b(726/√61)² = 121bb = 4356/61
Через диагональ основания АС правильной четырехугольной призмы (основание - квадрат) параллельно диагонали B1D призмы проведено сечение АРС. Сечение - равнобедренный треугольник с высотой ОР, параллельной диагонали B1D. АС = 2√2, Sapc=2√3 (дано).
Sapc=(1/2)*AC*PO => PO=2*S/AC = √6. Треугольники BB1D и BPO подобны, так как РО параллельна B1D, а BD=2*ВО (точка О пересечения диагоналей квадрата делит их пополам). Значит коэффициент подобия итреугольников равен 2 и диагональ призмы B1D равна РО*2 = 2√6.
ответ: диагональ призмы равна 2√6.
пусть один из отрезков гипотенузы = а
Второй отрезок = bГипотенуза - с берем первый катет и первый отрезок(605/√61)² = с * а
(605/√61)² = 121а
366025/61 = 121а
а = 3025/61 найдем b. По аналогии:
(726/√61)² = с * b(726/√61)² = 121bb = 4356/61