Розглянемо трикутники АВМ і А1В1М1. За умовою АВ = А1В1, АМ = А1М1, ﮮВАС = ﮮВ1А1С1. Оскільки АМ і А1М1 – бісектриси рівних кутів ВАС і В1А1С1, тоді ﮮВАС = 2ﮮВАМ = ﮮВ1А1С1 = 2ﮮВ1А1М1, тобто ﮮВАМ = ﮮВ1А1М1. За двома сторонами та кутом між ними ∆ВАМ = ∆В1А1М1. У рівних трикутників відповідні сторони та кути рівні АВ = А1В1, ﮮВМА = ﮮВ1М1А1. Розглянемо трикутники АМС і А1М1С1. За умовою ﮮВАС = 2ﮮМАС = ﮮВ1А1С1 = 2ﮮМ1А1С1, тобто ﮮМАС = ﮮМ1А1С1, переконаємось, що ﮮАМС = ﮮА1М1С1, тобто різниця величин двох кутів дорівнює нулю. Кути розгорнуті ﮮВАС = ﮮВ1М1С1 = 180˚. Тому ﮮАМС – ﮮА1М1С1 = (180˚ - ﮮВМА) – (180˚ - ﮮВ1М1А1) = ﮮВ1М1А1 – ﮮВМА = 0˚. За стороною і двома прилеглими кутами ∆АМС = ∆А1М1С1. У рівних трикутників відповідні сторони і кути рівні АС = А1С1, ﮮАСВ = ﮮА1С1В1, МС = МС1. За основною властивістю довжини відрізка ВС = ВМ + МВ = В1С1 = В1М1 + М1С1. Трикутники АВС і А1В1С1 рівні.
Розглянемо трикутники АВМ і А1В1М1. За умовою АВ = А1В1, АМ = А1М1, ﮮВАС = ﮮВ1А1С1. Оскільки АМ і А1М1 – бісектриси рівних кутів ВАС і В1А1С1, тоді ﮮВАС = 2ﮮВАМ = ﮮВ1А1С1 = 2ﮮВ1А1М1, тобто ﮮВАМ = ﮮВ1А1М1. За двома сторонами та кутом між ними ∆ВАМ = ∆В1А1М1. У рівних трикутників відповідні сторони та кути рівні АВ = А1В1, ﮮВМА = ﮮВ1М1А1. Розглянемо трикутники АМС і А1М1С1. За умовою ﮮВАС = 2ﮮМАС = ﮮВ1А1С1 = 2ﮮМ1А1С1, тобто ﮮМАС = ﮮМ1А1С1, переконаємось, що ﮮАМС = ﮮА1М1С1, тобто різниця величин двох кутів дорівнює нулю. Кути розгорнуті ﮮВАС = ﮮВ1М1С1 = 180˚. Тому ﮮАМС – ﮮА1М1С1 = (180˚ - ﮮВМА) – (180˚ - ﮮВ1М1А1) = ﮮВ1М1А1 – ﮮВМА = 0˚. За стороною і двома прилеглими кутами ∆АМС = ∆А1М1С1. У рівних трикутників відповідні сторони і кути рівні АС = А1С1, ﮮАСВ = ﮮА1С1В1, МС = МС1. За основною властивістю довжини відрізка ВС = ВМ + МВ = В1С1 = В1М1 + М1С1. Трикутники АВС і А1В1С1 рівні.
Согласно теореме Пифагора, второй катет
AC = √ (AB² - BC²) = √ (25² - 15²) = √ 400 = 20 см.
Тогда площадь треугольника
S = AC * BC / 2 = 20 * 15 / 2 = 150 см².
Радиус вписанной окружности
r = 2 * S / (a + b + c) = 2 * 150 / (15 + 20 + 25) = 300 / 60 = 5 см.
Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы, то есть в данном случае R = AB / 2 = 25 / 2 = 12,5 см.
Пусть точка Е - середина стороны АС. Тогда по теореме Пифагора
ВЕ = √ (ВС² + СЕ²) = √ (ВС² + (АС/2)²) = √ (15² + 10²) = √ 325 ≈ 18,03 см.