Обозначим угол при вершине А через х (<BAC = x) тогда угол при основании ВС равен 2х (<ABC = < ACB = 2x) BD- биссектриса и делит <ABC на два равных угла <ABD = <DBC = 2x/2=x <BAD = <DBA = x ===> ∆ ADB - равнобедренный и значит AD = BD <BDC = 2x (так как у ∆ ,АВС аналогичные углы х и 2х, , а сумма углов треугольника ровна 180 градусов градусов, значит третий угол у них будет равный, в данном случае 2х) <BDC = <DCB = 2x ===> ∆ BDC - равнобедренный и значит BD = BC, а поскольку AD = BD, то AD = BC
A) Тогда значит она пересекает АС в не этого треугольника, то есть на продолжений это теорема Менелая, то есть AD/DB*BK/KC*CF/AF=1 CF/AF=1/12 AC=AF-CF=11 CF/AC=1/11 2) Можно конечно по подобию треугольников размышлять , но для таких задач есть теоремы , Допустим Теорема Чевы , А затем Ван-Обеля , понятно что вы не изучали эти теоремы, так как это уже ясно по возрасту, если не хотите париться над этой задачей можно поступить так, проведем еще отрезок BL так что бы он проходил через точку О AD/DB*BK/KC*CL/LA = 1 CL/LA=1/12 AL/CL=12 теперь по Ван Обелю AO/OK=AD/DB+AL/LC = 15 то есть AO/OK=15/1 так же и DO:OC сделайте
тогда угол при основании ВС равен 2х (<ABC = < ACB = 2x)
BD- биссектриса и делит <ABC на два равных угла
<ABD = <DBC = 2x/2=x
<BAD = <DBA = x ===> ∆ ADB - равнобедренный и значит AD = BD
<BDC = 2x (так как у ∆ ,АВС аналогичные углы х и 2х, , а сумма углов треугольника ровна 180 градусов градусов, значит третий угол у них будет равный, в данном случае 2х)
<BDC = <DCB = 2x ===> ∆ BDC - равнобедренный и значит BD = BC, а поскольку AD = BD, то AD = BC
это теорема Менелая, то есть
AD/DB*BK/KC*CF/AF=1
CF/AF=1/12
AC=AF-CF=11
CF/AC=1/11
2) Можно конечно по подобию треугольников размышлять , но для таких задач есть теоремы , Допустим Теорема Чевы , А затем Ван-Обеля , понятно что вы не изучали эти теоремы, так как это уже ясно по возрасту, если не хотите париться над этой задачей можно поступить так, проведем еще отрезок BL так что бы он проходил через точку О
AD/DB*BK/KC*CL/LA = 1
CL/LA=1/12
AL/CL=12
теперь по Ван Обелю
AO/OK=AD/DB+AL/LC = 15 то есть AO/OK=15/1
так же и DO:OC сделайте