ВН = СК как расстояния между параллельными прямыми, значит
ВНКС - прямоугольник, ⇒
НК = ВС = 6 см.
ΔАВН = ΔDCK по гипотенузе и острому углу (АВ = CD так как трапеция равнобедренная, ∠BAH = ∠CDK как углы при основании равнобедренной трапеции), ⇒ АН = KD.
Тр. АБС. пусть АБ = 3, БС = 4. тр. египетский, значит АС = 5. КН параллельна основанию (гипотенузе) . значит S тр КБН = 1/2*S тр АБС (по условию) . S тр АБС = 1/2*АБ*БС*син. 90 градусов = 1/2*3*4*1 = 6 см кв. Тогда S тр. КБН = 1/2*6 = 3 см кв. Т. к. для тр. КБС: S = 1/2*КБ*БН*син 90 гр. , то КБ*БН = S :1/2 = 3 см. Пусть КБ = х, тогда БН = 3/х. Из подобия тр. АБС и тр КБН следует: АБ: БК = БС: БН, сост. и решим уравнение: 3:х = 4:3/х, отсюда х = 1,5. тогда в тр. КБН: КБ = 1,5 см, БН = 2 см. Тогда КН - ср. линия для тр. АБС, и КН = 1/2 АС = 2,5 см. Р тр. КБН = 1,5 + 2 + 2,5 = 6 см. ответ= 6 см
1. По теореме Пифагора:
АВ² = АС² + ВС²
АВ² = 6² + 8² = 36 + 64 = 100
АВ = 10 см
2. Проведем высоты трапеции ВН и СК.
ВН ║ СК как перпендикуляры к одной прямой,
ВН = СК как расстояния между параллельными прямыми, значит
ВНКС - прямоугольник, ⇒
НК = ВС = 6 см.
ΔАВН = ΔDCK по гипотенузе и острому углу (АВ = CD так как трапеция равнобедренная, ∠BAH = ∠CDK как углы при основании равнобедренной трапеции), ⇒ АН = KD.
АН = KD = (AD - HK)/2 = (14 - 6)/2 = 8/2 = 4 см
ΔАВН: ∠АНВ = 90°, по теореме Пифагора:
AB² = ВН² + АН²
ВН² = АВ² - АН²
ВН² = 5² - 4² = 25 - 16 = 9
ВН = 3 см
Sabcd = (AD + BC)/2 · BH
Sabcd = (14 + 6)/2 · 3 = 10 · 3 = 30 см²