В трапеции ABCD боковые стороны AB=CD=13 см, .основания BC=15см ,AD=21 . ОПУСТИМ на основание АD высоты BE И СF. тогда EF=BC=15см AD-EF 36 - 12 AE=FD= 2 = = 2 = 12 см применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см найдем площадь трапеции : S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²
Пусть К, Р, M, N - середины сторон соответственно АВ, BC, CD, AD, тогдаВ ΔABD: AK = KB, AN = ND ⇒ KN - средняя линия" Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны "KN || BD, KN = BD/2В ΔBCD: BP = PC, CM = MD ⇒ PM - средняя линияPM || BD, PM = BD/2Значит, KN || PM , KN = PMИз этого следует, что четырёхугольник KPMN - параллелограмм (по признаку параллелограмма)KN = BD/2 , KP = AC/2Р kpmn = 2•(KN + KP) = 2•(BD/2 + AC/2) = BD + AC = 12 + 10 = 22 смОТВЕТ: Р = 22 см
AD-EF 36 - 12
AE=FD= 2 = = 2 = 12 см
применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE
BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см
найдем площадь трапеции :
S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²