Каждая из высот, проведенных к боковым сторонам из вершин основания, образуют с основанием прямоугольные треугольники. У этих треугольников основание будет являться гипотенузой, а т. к. углы при основании равнобедренного треугольника равны (свойство углов при основании равнобедренного треугольника), то эти прямоугольные треугольники равны (по признаку равенства прямоугольных треугольников по гипотенузе и острому углу). Т. .к треугольники равны, то равны и все их элементы, а значит, и катеты (которые являются нужными высотами)
1. т.к. диагонали ромба взаимно перпендикулярны, точкой пересечения делятся пополам, то сторона находится из прямоугольного треугольника, в котором известны два катета - половины диагоналей, а сторона является гипотенузой этого треугольника. По Пифагору
эта сторона равна √((4/2)²+(4√3/2)²)=√(4+12)=√16=4
2. Получаем, что сторона равна одной из диагоналей ромба, а стороны равны у ромба, значит, эта диагональ делит ромб на два равносторонних треугольника. В них все углы по 60°. А т.к. углы, прилежащие к одной стороне ромба в сумме составляют 180°, то тупой угол ромба равен 180°-60°=120°
У этих треугольников основание будет являться гипотенузой, а т. к. углы при основании равнобедренного треугольника равны (свойство углов при основании равнобедренного треугольника), то эти прямоугольные треугольники равны (по признаку равенства прямоугольных треугольников по гипотенузе и острому углу). Т. .к треугольники равны, то равны и все их элементы, а значит, и катеты (которые являются нужными высотами)
1. т.к. диагонали ромба взаимно перпендикулярны, точкой пересечения делятся пополам, то сторона находится из прямоугольного треугольника, в котором известны два катета - половины диагоналей, а сторона является гипотенузой этого треугольника. По Пифагору
эта сторона равна √((4/2)²+(4√3/2)²)=√(4+12)=√16=4
2. Получаем, что сторона равна одной из диагоналей ромба, а стороны равны у ромба, значит, эта диагональ делит ромб на два равносторонних треугольника. В них все углы по 60°. А т.к. углы, прилежащие к одной стороне ромба в сумме составляют 180°, то тупой угол ромба равен 180°-60°=120°
ответ 120°