1. Сторона А(1)А(2) равна радиусу вписанной окружности, то есть двум диаметрам = 2R
В эту окружность вписан правильный треугольник со стороной 4√3 см.
Радиус окружности, описанной около правильного треугольника со стороной а, равен R = a/√3.
Находим радиус: R = 4√3/√3 = 4 см.
Значит, сторона А(1)А(2) равна 2R = 2*4 = 8 см
2. Сторона А(1)А(2) - это сторона правильного шестиугольника, описанного около окружности, в которую вписан правильный треугольник со стороной 6√3 см.
Сначала находим радиус окружности, описанной около этого правильного треугольника, через его сторону. R = a/√3 = 6√3/√3 = 6 см.
Известно, что правильный шестиугольник разбивается на шесть правильных треугольников с высотой, равной радиусу вписанной окружности. Из этого следует, что сторона правильного шестиугольника находится через радиус вписанной окружности по формуле: а = R/sin 60°.
номер 15
дано: угол ТЕR = 75 градусов
ER - бисектриса
ET = FR = EF
75+75=150 градусов - угол E
E=R, T=F
угол R = 150 градусов
360 - (150+150) = 60 градусов
60:2=30
угол T=30 градусов
угол F=30 градусов
номер 16 (тут я не знаю до конца, попробуй загуглить)
угол О = 115 градусов (и с одной стороны угла, и с другой так как углы вертикальны)
угол N=115 градусов (так же и с одной строны угла и с другой так как они тоже вертикальны)
угол E = угол M
номер 10
назовем среднюю точку - O
дано: угол NOM = 120 градусов
EN=FM
из-за вертикальности углов можно сказать, что угол EOF = 120 градусов
угол OEN= 90 градусов
угол MFO= 90 градусов
180-120=60 градусов : 2 = 30.
углы ONM, OMN= по 30 градусов.
угол N= 60, угол M= 60
180-(90+30)= 60 градусов.
углы EON и FOM = по 60 градусов на каждый угол.
180-120= 60 градусов, значит:
60 : 2 = 30.
Угол OEF = 30 градусов.
Угол OFE = 30 градусов.
Угол E = 90 + 30 = 120 градусов.
Угол F = тоже 120 градусов.
1. 8 см
2. 4√3 см
Объяснение:
1. Сторона А(1)А(2) равна радиусу вписанной окружности, то есть двум диаметрам = 2R
В эту окружность вписан правильный треугольник со стороной 4√3 см.
Радиус окружности, описанной около правильного треугольника со стороной а, равен R = a/√3.
Находим радиус: R = 4√3/√3 = 4 см.
Значит, сторона А(1)А(2) равна 2R = 2*4 = 8 см
2. Сторона А(1)А(2) - это сторона правильного шестиугольника, описанного около окружности, в которую вписан правильный треугольник со стороной 6√3 см.
Сначала находим радиус окружности, описанной около этого правильного треугольника, через его сторону. R = a/√3 = 6√3/√3 = 6 см.
Известно, что правильный шестиугольник разбивается на шесть правильных треугольников с высотой, равной радиусу вписанной окружности. Из этого следует, что сторона правильного шестиугольника находится через радиус вписанной окружности по формуле: а = R/sin 60°.
Находим сторону: а = 6:(√3/2) = 6*2 : √3 = 4√3 см