Кут між твірною конуса та його висотою дорівнює 45° , а відстань від центра вписаної в конус кулі до вершини конуса дорівнює 4 см. Знайдіть радіус даної кулі
Теорема о сумме углов треугольника — классическая теорема евклидовой . утверждает, что сумма углов треугольника на евклидовой плоскости равна 180°. из теоремы следует, что у любого треугольника не меньше двух острых углов. действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. сумма этих углов не меньше 180°. а это невозможно, так как сумма всех углов треугольника равна 180°. доказательство пусть {\displaystyle \delta abc} — произвольный треугольник. проведём через вершину bпрямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки aи d лежали по разные стороны от прямой bc. углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd. сумма всех трёх углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
Половина каждой из них будет х и 3,5х соответственно.
Из прямоугольного треугольника с гипотенузой, равное стороне ромба 53:4=13,25 и катетами х и 3,5х, равными половинами диагоналей, найдем по т.Пифагора величину х. x^2+(3,5х)^2=(13,25)^2
13,25x^2=(13,25)^2
x^2=13,25
x=корень из 13,25 2х=2*корень из 13,25
7х=7*корень из 13,25
Площадь ромба равна половине произведения его диагоналей.
Пусть коэффициент отношений диагоналей равен x.
Тогда короткая диагональ будет 2х, а длинная 7х.
Половина каждой из них будет х и 3,5х соответственно.
Из прямоугольного треугольника с гипотенузой, равное стороне ромба 53:4=13,25 и катетами х и 3,5х, равными половинами диагоналей, найдем по т.Пифагора величину х.
x^2+(3,5х)^2=(13,25)^2
13,25x^2=(13,25)^2
x^2=13,25
x=корень из 13,25
2х=2*корень из 13,25
7х=7*корень из 13,25
Площадь ромба равна половине произведения его диагоналей.
S=7*корень из 13,25*2*корень из 13,25 = 92,75
Высоту ромба найдем по формуле:
S=h*a
S=h*13,25
h=92,75:13,25 = 7
ответ: 7.