Поскольку иное не указано, данный конус – прямой. У прямого конуса основание высоты совпадает с центром основания.
На рисунке приложения треугольник АВС– осевое сечение конуса. ∆ АВС- равнобедренный (АВ=ВС как образующие ). АС - диаметр, О - центр основания, ВО - высота конуса.
ВО⊥АС⇒ треугольник ВОС – прямоугольный, и отрезок ОН, проведенный перпендикулярно к гипотенузе ВС, является его высотой. Прямоугольный ∆ СОВ~∆ НОВ по общему углу при вершине В ⇒
Можно через площадь треугольника)) S = p*r = ab / 2 (площадь описанного многоугольника (не только треугольника) = произведению полу-периметра на радиус вписанной окружности, площадь (только) прямоугольного треугольника = половине произведения катетов))) (a+b+c)*r = a*b r = a*b / (a+b+c) с = √(12²+5²) = 13 r = 5*12 / (5+12+13) = 5*12 / 30 = 2 ------------------------------------------------ можно, составив уравнение))) для этого нужно вспомнить, что отрезки касательных, проведенных из одной точки к окружности, равны; что радиус, проведенный в точку касания, перпендикулярен касательной; вписанная в прямоугольный треугольник окружность "вырезает" из прямого угла квадрат своими радиусами...
Поскольку иное не указано, данный конус – прямой. У прямого конуса основание высоты совпадает с центром основания.
На рисунке приложения треугольник АВС– осевое сечение конуса. ∆ АВС- равнобедренный (АВ=ВС как образующие ). АС - диаметр, О - центр основания, ВО - высота конуса.
ВО⊥АС⇒ треугольник ВОС – прямоугольный, и отрезок ОН, проведенный перпендикулярно к гипотенузе ВС, является его высотой. Прямоугольный ∆ СОВ~∆ НОВ по общему углу при вершине В ⇒
∠ВСО=∠ВОН=α.
V(кон)=πR²•h/3
R=BC•cosα=n•cosα
h=BO=n•sinα
V=π•n²•cos²α•n•sinα/3=n³•cos²α•sinα/3
S = p*r = ab / 2
(площадь описанного многоугольника (не только треугольника) = произведению полу-периметра на радиус вписанной окружности,
площадь (только) прямоугольного треугольника = половине произведения катетов)))
(a+b+c)*r = a*b
r = a*b / (a+b+c)
с = √(12²+5²) = 13
r = 5*12 / (5+12+13) = 5*12 / 30 = 2
------------------------------------------------
можно, составив уравнение)))
для этого нужно вспомнить, что отрезки касательных, проведенных из одной точки к окружности, равны;
что радиус, проведенный в точку касания, перпендикулярен касательной;
вписанная в прямоугольный треугольник окружность "вырезает" из прямого угла квадрат своими радиусами...