Проведем AC и AD. Получили три треугольника, в каждом из котором искомый угол. Дан правильный пятиугольник. Значит все углы пятиугольника равны (ABC BCD CDE и тд). Сумма углов пятиугольника равна 180(n-2)=540 , а каждый из его углов 540/5=108 градусов. Теперь про треугольники, которые мы отсекли. Они равнобедренные, но для задачи будем использовать лишь ABC и DAE. Равнобедренные они так как две стороны каждого из них являются сторонами пятиугольника, правильного по условию. значит его углы при основании равны и равны (180-108)/2=36 градусов. Теперь рассмотрим угол CAD=EAB-BAC-DAE=108-36-36=36градусов. Таким образом мы доказали, что углы BAC=CAD=DAE
V₁=πR₁² *H₁R₂=R₁/2H₂=4H₁
V₂=πR₂² *H₂V₂=π(R₁/2)² *(4H₁)V₂=π(R₁²/4)*4H₁V₁=πR₁² *H₁, => V₂=V₁ответ: объём не изменится
2. R₁=R₂H₁/H₂=2. H V_{1} = \frac{1}{3} * \pi R_{1} ^{2} * H_{1} V_{2} = \frac{1}{3}* \pi R_{2} ^{2} * H_{2} V_{2} = \frac{1}{3} * \pi * R_{1} ^{2}* (2 H_{1} )₁=2*H₂ V_{2}=4*( \frac{1}{3} \pi R_{1} ^{2} * H_{1} ) \frac{ V_{1} }{ V_{2} } = {1}{3} \pi R_{1} ^{2} * H_{1} }{4*( \frac{1}{3} \pi R _{1} ^{2} * H_{1} )} } \frac{ V_{1} }{ V_{2} } = {1}{4}
Теперь про треугольники, которые мы отсекли. Они равнобедренные, но для задачи будем использовать лишь ABC и DAE. Равнобедренные они так как две стороны каждого из них являются сторонами пятиугольника, правильного по условию. значит его углы при основании равны и равны (180-108)/2=36 градусов. Теперь рассмотрим угол CAD=EAB-BAC-DAE=108-36-36=36градусов. Таким образом мы доказали, что углы BAC=CAD=DAE