Рассмотрим равнобедренный треугольник АВС, лежащий в основании пирамиды: Центр пирамиды будет лежать на пересечении серединных перпендикуляров, тогда точка будет одинаково удалена от вершин АВС, т.к. образуются три равных по катетам прямоугольных треугольника или, по-другому, это будет О- центр описанной около АВС окружности.Высота BH , на сторону АС равна Боковая сторона К сторонам ВС и АС проведём серединные перпендикуляры ОК и ОН, пересекающиеся в точке О.Рассмотрим два подобных треугольника ВОК и НВС( они подобны так как имеют по прямому углу и одному общему)S-вершина пирамиды
Решение понятно из рисунка. Треугольник АВС правильный, значит точка D лежит ВНЕ треугольника. Значит есть два варианта ответа, для точек D, симметричных относительно Стороны АВ треугольника. В первом случае <BAD=90°, значит <CAD=30° (90°-60°). Треугольник АВD равнобедренный (прямоугольный с углами 45°). АВ=АD. Значит треугольник DAC тоже равнобедренный (АС=АD) с углом при вершине 30°. Тогда <ADC=(180-30 ):2=75°, а <CDB=75-45=30°/ ответ: <СDB=30°
Во втором случае: В равеобедренном треугольнике АD1С (AD1=AC) <D1AC=90+60=150°. Тогда <AD1C=<D1CA=15°, а <CD1B=45-15=30° ответ: <СD1B=30°
Центр пирамиды будет лежать на пересечении серединных перпендикуляров, тогда точка будет одинаково удалена от вершин АВС, т.к. образуются три равных по катетам прямоугольных треугольника или, по-другому, это будет О- центр описанной около АВС окружности.Высота BH , на сторону АС равна Боковая сторона К сторонам ВС и АС проведём серединные перпендикуляры ОК и ОН, пересекающиеся в точке О.Рассмотрим два подобных треугольника ВОК и НВС( они подобны так как имеют по прямому углу и одному общему)S-вершина пирамиды
Треугольник АВС правильный, значит точка D лежит ВНЕ треугольника. Значит есть два варианта ответа, для точек D, симметричных относительно Стороны АВ треугольника.
В первом случае <BAD=90°, значит <CAD=30° (90°-60°).
Треугольник АВD равнобедренный (прямоугольный с углами 45°). АВ=АD. Значит треугольник DAC тоже равнобедренный (АС=АD) с углом при вершине 30°. Тогда <ADC=(180-30 ):2=75°, а <CDB=75-45=30°/
ответ: <СDB=30°
Во втором случае:
В равеобедренном треугольнике АD1С (AD1=AC) <D1AC=90+60=150°.
Тогда <AD1C=<D1CA=15°, а <CD1B=45-15=30°
ответ: <СD1B=30°