АВСД трапеция. ВС- меньшее основание. АВ = ВС = СД поскольку трапеция равнобокая и ее меньшее основание равно боковой стороне. АС - диагональ. Угол САД = 30 градусов. Это все по условию задачи. Решение. Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА. Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов. Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов. Угол АВС = 180 - 60 = 120 градусов. Поскольку трапеция равнобокая, то угол ВАД = СДА = 60 градусов угол АВС = ВСД = 120 градусов.
Дано: Решение: Р=20 см решим с уравнения АВ больше ВС на 2 см х+х+2=20 Найти: АВ, ВС,АС 2х+2=20 Пусть ВС х, тогда АВ= х+2 2х=18 х=9, отсюда ВС = 9, тогда АВ=11 затем по правилу периметр это сумма всех сторон делаем следующее: АВ+ВС+АС=20, 11+9+АС=20, 20+АС=20, АС=0. ответ: 11,9,0
Решение.
Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА.
Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов.
Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов.
Угол АВС = 180 - 60 = 120 градусов.
Поскольку трапеция равнобокая, то
угол ВАД = СДА = 60 градусов
угол АВС = ВСД = 120 градусов.
Р=20 см решим с уравнения
АВ больше ВС на 2 см х+х+2=20
Найти: АВ, ВС,АС 2х+2=20
Пусть ВС х, тогда АВ= х+2 2х=18
х=9, отсюда ВС = 9, тогда АВ=11
затем по правилу периметр это сумма всех сторон делаем следующее: АВ+ВС+АС=20, 11+9+АС=20, 20+АС=20, АС=0. ответ: 11,9,0