Посчитаем расстояния меж точками CD = sqrt((2-6)^2+(2-5)^2) = sqrt(4^2+3^2) = sqrt(16+9) = sqrt(25) = 5 DE = sqrt((6-5)^2+(5-(-2))^2) = sqrt(1^2+7^2) = sqrt(50) = 5sqrt(2) EC = sqrt((5-2)^2+(-2-2)^2) = sqrt(3^2+4^2) = sqrt(9+16) = sqrt(25) = 5 Длины двух сторон совпали, и это хорошо, треугольник действительно равнобедренный. Просят найти биссектрису, проведённую из вершины равнобедренного треугольника. А биссектриса эта совпадает с высотой и медианой. Медиана делит основание пополам в точке М М = (D+E)/2 = ((6+5)/2;(5-2)/2) = (11/2;3/2) = (5,5;1,5) CM = sqrt((2-5,5)^2+(2-1,5)^2) = sqrt(3,5^2+0,5^2) = 5/sqrt(2)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
CD = sqrt((2-6)^2+(2-5)^2) = sqrt(4^2+3^2) = sqrt(16+9) = sqrt(25) = 5
DE = sqrt((6-5)^2+(5-(-2))^2) = sqrt(1^2+7^2) = sqrt(50) = 5sqrt(2)
EC = sqrt((5-2)^2+(-2-2)^2) = sqrt(3^2+4^2) = sqrt(9+16) = sqrt(25) = 5
Длины двух сторон совпали, и это хорошо, треугольник действительно равнобедренный.
Просят найти биссектрису, проведённую из вершины равнобедренного треугольника. А биссектриса эта совпадает с высотой и медианой.
Медиана делит основание пополам в точке М
М = (D+E)/2 = ((6+5)/2;(5-2)/2) = (11/2;3/2) = (5,5;1,5)
CM = sqrt((2-5,5)^2+(2-1,5)^2) = sqrt(3,5^2+0,5^2) = 5/sqrt(2)
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.