Пусть x приходится на 1 часть. 1x-1 угол. 2x- 2 угол. 3x-3 угол. Сумма углов треугольника равна 180 градусов. x+2x+3x=180. 6x=180. x=30. 1 угол - 30 градусов, 2 - 60 градусов, 3 - 90 градусов. Треугольник у нас получается прямоугольным. Гипотенуза из условия будет равна 36. Катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы = 18. Оставшийся катет можно найти по т. Пифагора: 36^2-18^2=оставшийся катет в квадрате. 972=катет в квадрате. Он будет равен 18*корень из 3. Наименьшая сторона равна 18.
Свойство: Средняя линия треугольника соединяет середины двух сторон, параллельна третьей стороне и равна ее половине. EF - средняя линия. Значит АEFВ - трапеция, в которой CВ=2ЕF. Свойство: Если в трапецию вписана окружность, то сумма оснований трапеции равна сумме ее боковых сторон. Итак, ВС+EF=CE+FB. Но EF=(1/2)*ВС, а СЕ+FB=(1/2)*(АВ+АС). Значит (3/2)*ВС=(1/2)*(АВ+АС) или 3ВС=АВ+АС. АВ+АС+ВС=24 (дано). Тогда 4ВС=24, а ВС=6. Sabc=(1/2)*ВC*h=(1/2)*6*8=24.(так как h=2*d=8, поскольку EF - средняя линия и делит h пополам. Половина же высоты - это в нашем случае диаметр вписанной окружности). По Герону: Sabc=√[p(p-a)(p-b)(p-c). Или S²=12(12-a)(12-b)(12-6). То есть 24²=12*6*(12-a)(12-b) или 8=(12-a)(12-b). Но a+b+c=24, а с=6, значит a+b=18. тогда b=18-a. Подставляем это значение в выражение 2=(12-a)(12-b) и получаем: 8=(12-a)(а-6). Имеем квадратное уравнение: а²-18а+80=0, откуда а1=10, а2=8 и b1=8, b2=10.
Значит АEFВ - трапеция, в которой CВ=2ЕF.
Свойство:
Если в трапецию вписана окружность, то сумма оснований трапеции равна сумме ее боковых сторон.
Итак, ВС+EF=CE+FB. Но EF=(1/2)*ВС, а СЕ+FB=(1/2)*(АВ+АС).
Значит (3/2)*ВС=(1/2)*(АВ+АС) или 3ВС=АВ+АС.
АВ+АС+ВС=24 (дано). Тогда 4ВС=24, а ВС=6.
Sabc=(1/2)*ВC*h=(1/2)*6*8=24.(так как h=2*d=8, поскольку EF - средняя линия и делит h пополам. Половина же высоты - это в нашем случае диаметр вписанной окружности).
По Герону: Sabc=√[p(p-a)(p-b)(p-c). Или S²=12(12-a)(12-b)(12-6).
То есть 24²=12*6*(12-a)(12-b) или 8=(12-a)(12-b).
Но a+b+c=24, а с=6, значит a+b=18. тогда b=18-a.
Подставляем это значение в выражение 2=(12-a)(12-b) и получаем:
8=(12-a)(а-6). Имеем квадратное уравнение:
а²-18а+80=0, откуда а1=10, а2=8 и b1=8, b2=10.