В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sarah205682
sarah205682
13.10.2020 09:12 •  Геометрия

Кути трикутника відносяться як 4 : 3 : 8. Знайдіть більший з
кутів, які утворилися при перетині бісектрис менших кутів
трикутника.

Показать ответ
Ответ:
Кюнечка
Кюнечка
23.09.2022 15:17

Площадь полученного шестиугольника будет меньше площади данного шестиугольника на шесть площадей равных равнобедренных треугольников. У этих треугольников боковые стороны равны ½ стороны данного шестиугольника, а угол между ними равен 120⁰.

SΔ= ½ ab · sin γ

S = ½ · ¼a² · (√3)/2 = \frac{\sqrt{3}a^2}{16} (кв.ед.)

Из формулы площади шестиугольника S=\frac{3 \sqrt{3} a^2}{2} выражаем сторону а:

a^2 = \frac{2S}{3 \sqrt{3}} 

a^2 = \frac{128}{3 \sqrt{3}}

Подставляя в формулу площади треугольника, находим, что SΔ = 8/3 кв.ед.

6SΔ = 16 кв.ед.

Площадь полученного шестиугольника равна 64-16=48 (кв.ед.) 

 

 

0,0(0 оценок)
Ответ:
LeaV
LeaV
06.01.2020 12:58

ответ:Ре­ше­ние.

а) Обо­зна­чим бук­вой E точку пе­ре­се­че­ния от­рез­ков MK и AB. Углы ∠ALB и ∠LAD равны, как на­крест ле­жа­щие углы; ана­ло­гич­но ∠CLD = ∠ADL, как на­крест ле­жа­щие. От­сю­да по­лу­ча­ем, что ∠BAL = ∠BLA, ∠CDL = ∠CLD, то есть тре­уголь­ни­ки ABL и CLD рав­но­бед­рен­ные (AB = BL, CL = CD). Тогда бис­сек­три­сы этих тре­уголь­ни­ков BM и CK яв­ля­ют­ся также вы­со­та­ми и ме­ди­а­на­ми. Зна­чит, точки M и K яв­ля­ют­ся се­ре­ди­на­ми сто­рон AL и DL со­от­вет­ствен­но. От­сю­да сле­ду­ет, что от­ре­зок MK яв­ля­ет­ся сред­ней ли­ни­ей тре­уголь­ни­ка ALD. Зна­чит, MK || AD.

Те­перь если рас­смот­реть тре­уголь­ник ABL, по­лу­ча­ем, что от­ре­зок EM па­рал­ле­лен сто­ро­не BL и ис­хо­дит из се­ре­ди­ны сто­ро­ны AL. От­сю­да сле­ду­ет, что EM яв­ля­ет­ся сред­ней ли­ни­ей этого тре­уголь­ни­ка, а зна­чит точка E — се­ре­ди­на сто­ро­ны AB. Что и тре­бо­ва­лось до­ка­зать.

б) Рас­смот­рим 4-уголь­ник MLKN. Из преды­ду­ще­го пунк­та по­лу­чи­ли, что ∠M = 90°, ∠K = 90°, от­ку­да сле­ду­ет, что

То есть у дан­но­го 4-уголь­ни­ка суммы про­ти­во­по­лож­ных углов дают , от­ку­да сле­ду­ет, что во­круг него можно опи­сать окруж­ность. Со­еди­ним точки N и L (пе­ре­се­че­ние с MK в точке F) — по­лу­чим 2 пря­мо­уголь­ных тре­уголь­ни­ка NML и NKL. Тогда центр опи­сан­ной окруж­но­сти лежит на се­ре­ди­не общей ги­по­те­ну­зы NL.

Те­перь за­ме­тим, что тре­уголь­ни­ки MFL и NFK по­доб­ны по 2 углам (∠MFL = ∠NFK, как вер­ти­каль­ные; ∠MLF = ∠NKF, как впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же дугу MN). Тогда

Ана­ло­гич­но тре­уголь­ни­ки NMF и KFL по­доб­ны по 2 углам (∠NFM = ∠KFL, как вер­ти­каль­ные; ∠MNF = ∠FKL, как впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же дугу ML). Тогда

По­де­лим со­от­но­ше­ния друг на друга:

Из по­до­бия тре­уголь­ни­ков NLC и NFK (по 3-м углам) по­лу­чим, что Ана­ло­гич­но из по­до­бия тре­уголь­ни­ков NLB и NFM по­лу­чим, что , от­ку­да сле­ду­ет:

Окон­ча­тель­но по­лу­ча­ем, что

ответ: 5 : 14.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота