Обозначим точку пересечения высот обеих плоскостей и АВ через О; Найдем ДО -высоту равнобедренного треугольника она будет высотой медианой в равнобедренном треугольнике , так же как и ОС будет высотой медианой в равностороннем треугольнике.ДА^2-АО^2=2^2+(\/3)^2=1;Откуда ДО=1; Ищем СО^2: АС^2-АО^2=12-3=9; Откуда СО=3; Итак имеем 3стороны треугольника: с величинами :1;3; и \/7; По ТЕЛРЕМЕ косинусов найдем угол ДОС; ДС^2=ДО^2+ОС^2-2ДО*ОС*cosДОС; Подставим и получим числовой результат: 7=1+9-6*cosДОС; 6cosДОС=3; Cos ДОС=1/2; Откуда угол ДОС равен 60* ; ответ угол наклона ДОС равен 60*;
AD = (√21)/5 ед.
Объяснение:
Биссектриса AD угла А треугольника АВС делит противоположную сторонуВС в отношении прилежащих сторон.
То есть BD/DC = 4/1. ВС =АВ = 4 ед.
Значит СD = 4/5 ед.
Проведем высоту ВН. В равнобедренном треугольнике АВС высота является и медианой. АН = НС = 1/2 ед.
В прямоугольном треугольнике АВН
CosA = AH/AB = (1/2)/4 = 1/8.
Углы при основании равнобедренного треугольника равны.
CosC = CosA = 1/8.
В треугольнике ADC по теореме косинусов:
AD = √(AC²+DC² - 2·AC·DC·CosC) =>
AD = √(1+16/25 - 2·1·4/5·1/8) => AD = √(21/25).
AD = (√21)/5 ед.