В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Панель11
Панель11
16.10.2022 08:12 •  Геометрия

Лежат ли точки A(1,2), B(1,0) и C(80,82) на одной прямой?

Показать ответ
Ответ:
afspafa
afspafa
13.04.2020 11:24
Найдем угол ВАС:  180- (30+45) = 180 - 75 = 105 градусов
Можно провести высоту к стороне ВС, тогда высота AD будет перпендикулярна стороне BC и угол BAD = 180 - (90+45) = 180 - 135 = 45 градусов. Следует, что BD=AD . Пусть сторона - х, тогда BD=AD=x
x^2 + x^2 = 16 (по теореме Пифагора: квадрат гипотенузы, т.е. AB, равен сумме длин квадратов катетов, т.е. AD и BD)
2х^2 = 16,
x^2 = 8,
x= 2 корня из 2

По теореме длины стороны треугольника напротив угла в 30 градусов: AC=2AD= 2* 2 корня из 2 = 4 корня из 2
ответ: 4 корня из 2
0,0(0 оценок)
Ответ:
yanakuzmina1
yanakuzmina1
09.05.2022 10:50
Поскольку боковые грани пирамиды образуют равные двугранные углы с плоскостью основания, высота пирамиды проходит либо через центр вписанной, либо через центр одной из вневписанных окружностей треугольника основания. Пусть высота пирамиды проходит через центр O вписанной окружности основания ABC данной треугольной пирамиды ABCD , в которой AC = 3 ,BC = 4 , AB = 5 . Так как 

AC2 + BC2 = 9 + 16 = 25 = AB2,
то треугольник ABC – прямоугольный. Пусть O центр вписанной окружности треугольника ABC (рис.1), r – её радиус, M – точка касания окружности со стороной AB . Тогда 
r = (AC + BC - AB) = (3+4-5) = 1.
Так как OM  AB , то по теореме о трёх перпендикулярах DM  AB , поэтому DMO – линейный угол двугранного угла между боковой гранью DAB и плоскостью основания пирамиды. По условию задачи  DMO = 45o . Из прямоугольного треугольника DMOнаходим, что 
DO = OM = r = 1.
Пусть Oc центр вневписанной окружности треугольника ABC , касающейся стороны AB (рис.2), rc – её радиус, N – точка касания окружности со стороной AB . Тогда 
rc = (AC + BC + AB) = (3+4+5) = 6.
Аналогично предыдущему из прямоугольного треугольника DNOнаходим, что 
DOc = ON = rc = 6.
Пусть Ob – центр вневписанной окружности треугольника ABC , касающейся стороны AC , rb – её радиус, K – точка касания окружности со стороной AC . Тогда 
rb =  (AB + BC - AC) = (5+4-3) = 3.
Из прямоугольного треугольникаDKO находим, что 
DOb = OK = rb = 3.
Пусть Oa центр вневписанной окружности треугольника ABC , касающейся стороны BC , ra – её радиус, L – точка касания окружности со стороной AC . Тогда 
ra = (AB + AC - BC) = (5+3-4) = 2.
Из прямоугольного треугольникаDLO находим, что 
DOa = OL = ra = 2.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота