Лоыть больше периметра треу ольше периметра треугольника авст 1.58 аавс акт 1 найдите ac и в askt. 1) найдите ac и 2k, если = 121 15. st = 16 дм. 2) может ли от о дм. 2) может ли отношение периметров данных треугольников быть равным двум
Если взглянуть на хорошо нарисованный чертеж (то есть такой, где медианы треугольника взаимно перпендикулярны), можно увидеть три прямоугольных треугольника (их там больше, но нам только эти нужны) АОВ, АОЕ и BOD.
если обозначить КОРОТКИЕ ОТРЕЗКИ медиан, как y и z (ОD = z, при этом по свойству медиан ОА = 2*z, и так же OE = y, поэтому ОВ = 2*y), а неизвестную сторону АВ = х, то из этих треугольников сразу получается 3 равенства:
(2*y)^2 + (2*z)^2 = x^2; то есть х^2 = 4*(y^2 + z^2);
z^2 + (2*y)^2 = BD^2 = 4;
(2*z)^2 + y^2 = AE^2 = (3/2)^2 = 9/4;
Два последних уравнения можно честно решить, найти y и z, и вычислить х. Но раз нам надо только найти сумму квадратов y и z, можно сложить эти 2 последних уравнения, и мы сразу получим ответ.
Если взглянуть на хорошо нарисованный чертеж (то есть такой, где медианы треугольника взаимно перпендикулярны), можно увидеть три прямоугольных треугольника (их там больше, но нам только эти нужны) АОВ, АОЕ и BOD.
если обозначить КОРОТКИЕ ОТРЕЗКИ медиан, как y и z (ОD = z, при этом по свойству медиан ОА = 2*z, и так же OE = y, поэтому ОВ = 2*y), а неизвестную сторону АВ = х, то из этих треугольников сразу получается 3 равенства:
(2*y)^2 + (2*z)^2 = x^2; то есть х^2 = 4*(y^2 + z^2);
z^2 + (2*y)^2 = BD^2 = 4;
(2*z)^2 + y^2 = AE^2 = (3/2)^2 = 9/4;
Два последних уравнения можно честно решить, найти y и z, и вычислить х. Но раз нам надо только найти сумму квадратов y и z, можно сложить эти 2 последних уравнения, и мы сразу получим ответ.
Пусть О - точка пересечения медиан.
Если взглянуть на хорошо нарисованный чертеж (то есть такой, где медианы треугольника взаимно перпендикулярны), можно увидеть три прямоугольных треугольника (их там больше, но нам только эти нужны) АОВ, АОЕ и BOD.
если обозначить КОРОТКИЕ ОТРЕЗКИ медиан, как y и z (ОD = z, при этом по свойству медиан ОА = 2*z, и так же OE = y, поэтому ОВ = 2*y), а неизвестную сторону АВ = х, то из этих треугольников сразу получается 3 равенства:
(2*y)^2 + (2*z)^2 = x^2; то есть х^2 = 4*(y^2 + z^2);
z^2 + (2*y)^2 = BD^2 = 4;
(2*z)^2 + y^2 = AE^2 = (3/2)^2 = 9/4;
Два последних уравнения можно честно решить, найти y и z, и вычислить х. Но раз нам надо только найти сумму квадратов y и z, можно сложить эти 2 последних уравнения, и мы сразу получим ответ.
5*(y^2 + z^2) = 4 + 9/4 = 25/4; (y^2 + z^2) = 5/4; x^2 = 5;
ответ: АВ = корень(5)
Пусть О - точка пересечения медиан.
Если взглянуть на хорошо нарисованный чертеж (то есть такой, где медианы треугольника взаимно перпендикулярны), можно увидеть три прямоугольных треугольника (их там больше, но нам только эти нужны) АОВ, АОЕ и BOD.
если обозначить КОРОТКИЕ ОТРЕЗКИ медиан, как y и z (ОD = z, при этом по свойству медиан ОА = 2*z, и так же OE = y, поэтому ОВ = 2*y), а неизвестную сторону АВ = х, то из этих треугольников сразу получается 3 равенства:
(2*y)^2 + (2*z)^2 = x^2; то есть х^2 = 4*(y^2 + z^2);
z^2 + (2*y)^2 = BD^2 = 4;
(2*z)^2 + y^2 = AE^2 = (3/2)^2 = 9/4;
Два последних уравнения можно честно решить, найти y и z, и вычислить х. Но раз нам надо только найти сумму квадратов y и z, можно сложить эти 2 последних уравнения, и мы сразу получим ответ.
5*(y^2 + z^2) = 4 + 9/4 = 25/4; (y^2 + z^2) = 5/4; x^2 = 5;
ответ: АВ = корень(5)