Луч AD-биссектриса ула MAN на сторонах угла отложены равные отпрезки AM и AN. Запишите равные элементы треугольников MAD и NAD и определите по какому признаку треугольники равны
Задача №3 решена Пользователем Nelle987 Ведущий Модератор Знаток
1. Высоты треугольника пересекаются в одной точке, значит высота, проведенная к стороне АС, так же проходит через точку Н. ΔВНА₁: ∠А₁ = 90°, по теореме Пифагора ВН = √(ВА₁² + А₁Н²) = √(16 + 9) = √25 = 5 ΔВА₁Н подобен ΔАВ₁Н по двум углам (∠ВА₁Н = ∠АВ₁Н = 90°, углы при вершине Н равны как вертикальные), ВН : АН = А₁Н : НВ₁ 5 : 4 = 3 : НВ₁ НВ₁ = 3 · 4 / 5 = 12 / 5 = 2,4 ВВ₁ = ВН + НВ₁ = 5 + 2,4 = 7,4
2. Точка пересечения серединных перпендикуляров треугольника - центр описанной окружности. Углы АОВ, ВОС и АОС - центральные, а углы АСВ, ВАС и АВС - вписанные, опирающиеся на одну дугу с соответствующим центральным. Вписанный угол равен половине центрального, опирающегося на ту же дугу.
3. Прямые, содержащие высоты треугольника пересекаются в одной точке. Тогда прямая, на которой лежит высота к стороне МК , так же проходит через точку О. OA – высота. S(МНКО) = S(MOK) - S(MHK) = 1/2 · (OH + HA) · MK - 1/2 · HA · MK = 1/2 · OH · MK S(МНКО) = 1/2 · 5 · 10 = 25
1. В прямоугольных треугольниках Δ ADN и Δ DFC ∠A = ∠ C по свойству параллелограмма. ⇒ Треугольники подобны по первому признаку. На основе пропорциональности длин сходственных сторон имеем пропорцию:
AD/DC = DN/DF/
DF = 3.5*4/5 = 2.8
2. В треугольниках CFM и CAB ∠F = ∠ A, ∠ M = ∠ B как соответственные при FM║AB. ⇒ Треугольники подобны по первому признаку.
AC/CF = AB / FM
FM = 18*30/(18+27) = 12
AC/CF = CB/CM
CB = 45*15/18=37.5
ВМ = СВ - СМ = 37.5 - 15 = 22,5
3. В треугольниках АВС и ВСD ∠ C общий, ∠В = ∠D по условию задачи ⇒ Треугольники подобны по первому признаку.
АВ/AС = BD / BC
AC = 9*15.6/12 = 11.7
4. В прямоугольных треугольниках АВС и АМF ∠А общий. ⇒ Треугольники подобны по первому признаку.
Nelle987 Ведущий Модератор Знаток
1. Высоты треугольника пересекаются в одной точке, значит высота, проведенная к стороне АС, так же проходит через точку Н.
ΔВНА₁: ∠А₁ = 90°, по теореме Пифагора
ВН = √(ВА₁² + А₁Н²) = √(16 + 9) = √25 = 5
ΔВА₁Н подобен ΔАВ₁Н по двум углам (∠ВА₁Н = ∠АВ₁Н = 90°, углы при вершине Н равны как вертикальные),
ВН : АН = А₁Н : НВ₁
5 : 4 = 3 : НВ₁
НВ₁ = 3 · 4 / 5 = 12 / 5 = 2,4
ВВ₁ = ВН + НВ₁ = 5 + 2,4 = 7,4
2. Точка пересечения серединных перпендикуляров треугольника - центр описанной окружности.
Углы АОВ, ВОС и АОС - центральные, а углы АСВ, ВАС и АВС - вписанные, опирающиеся на одну дугу с соответствующим центральным.
Вписанный угол равен половине центрального, опирающегося на ту же дугу.
∠ВАС = 1/2 ∠ВОС = 70°
∠АВС = 1/2 ∠АОС = 60°
∠АСВ = 1/2 ∠АОВ = 50°
3.
Прямые, содержащие высоты треугольника пересекаются в одной точке. Тогда прямая, на которой лежит высота к стороне МК , так же проходит через точку О.
OA – высота.
S(МНКО) = S(MOK) - S(MHK) = 1/2 · (OH + HA) · MK - 1/2 · HA · MK = 1/2 · OH · MK
S(МНКО) = 1/2 · 5 · 10 = 25
Объяснение:
1. В прямоугольных треугольниках Δ ADN и Δ DFC ∠A = ∠ C по свойству параллелограмма. ⇒ Треугольники подобны по первому признаку. На основе пропорциональности длин сходственных сторон имеем пропорцию:
AD/DC = DN/DF/
DF = 3.5*4/5 = 2.8
2. В треугольниках CFM и CAB ∠F = ∠ A, ∠ M = ∠ B как соответственные при FM║AB. ⇒ Треугольники подобны по первому признаку.
AC/CF = AB / FM
FM = 18*30/(18+27) = 12
AC/CF = CB/CM
CB = 45*15/18=37.5
ВМ = СВ - СМ = 37.5 - 15 = 22,5
3. В треугольниках АВС и ВСD ∠ C общий, ∠В = ∠D по условию задачи ⇒ Треугольники подобны по первому признаку.
АВ/AС = BD / BC
AC = 9*15.6/12 = 11.7
4. В прямоугольных треугольниках АВС и АМF ∠А общий. ⇒ Треугольники подобны по первому признаку.
АС/ВС = AF/MF
АС = 24*9/12 = 18
АВ/ВС = АМ/MF.
AM найдем по теореме Пифагора = √(9²+12²) = 15
АВ = 24*15/12=30