Луч c проходит между сторонами угла (ab), ∠(ab) = 26°18', ∠(ac) = 13°9'. Докажи методом доказательства от противного, что луч c является биссектрисой угла ∠(ab).
Рассмотрим треугольник, образованный половинами диагоналей (диагонали у прямоугольника равны, поэтому и половинки равны) малой стороной. так как половины диагоналей равны, то рассматриваемый треугольник, как минимум, равнобедренный. Углу при его основании равны. Сумма углов в треугольнике 180, значит угол при основании треугольника (180-60)/2=60. как видим, три угла равны 60 град. Значит, рассматриваемый треугольник равносторонний, а равностороннего треугольника стороны равны. Значит половина диагонали равна 32. Значит вся диагональ 2×32=64см. Все. Нарисуйте и назовите буквами. Мои слова запишите через буквы
Нарисуйте и назовите буквами. Мои слова запишите через буквы
AM = 4 см; AC ~ 7,84; R ~ 3 см;
Объяснение:
a)
∠BAC =180-B-C =180-50-30 =100
∠BAM =∠BAC/2 =50 (AM - биссектриса ∠BAC)
∠BAM=∠B => △BMA - равнобедренный, AM=BM=4 (см)
б) ∠BМА = 180 - ∠В - ∠ВАМ = 180 - 50 - 50 = 100; ∠АМС смежный углу ∠ВМА, значит ∠АМС = 180 - ∠ВМА = 180 - 80 = 100.
АС ищем через теорему синусов, АМ/sin C = AC/sin AMC => AC = AM*sinAMC/sin C = 4 * sin 100/sin 30 = 8 * sin 100 ~ 8 * 0,98 ~ 7,84см
с) Радиус тоже через теорему синусов.
AC/sinB = 2R => R = AC / 2 * sin B = 7,84 / 2 * sin 50 ~ 3 см
Рисунок прикрепляю
ответ: AM = 4 см; AC ~ 7,84; R ~ 3 см;
Выполнил Барановский Владислав
Можно лучший ответ)