Объем прямоугольного параллелепипеда равен V = a*b*c, где a,b и c - три его измерения. Нам дано: a+b= 20:2 =10см (1), b+c=32:2=16см(2). Из (1) b=10-a. Подстаим значение b в (2): 10-a+c=16, отсюда с=а+6. Теперь подставим эти значения в формулу диагонали прямоугольного параллелепипеда: D² = a²+b²+c² и получим 14²=a²+(10-a)²+(a+6)² раскрываем скобки, приводим подобные и имеем квадратное уравнение: 3a²-8a-60=0, решая которое получаем а1=6см, а2 = -20 (не удовлетворяет условию задачи). Итак, имеем: a=6см, b=4cм и c=12см. Тогда искомый объем параллелепипеда равен V=a*b*c =6*4*12 = 288см³. ответ: V=288см³
1) Пусть a и b - два данных вектора. Если вектор р представлен в виде p=xa+yb, где х и у -некоторые числа, то говорят, что вектор р разложен по векторам a и b. Числа х и у называются коэффициентами разложения. 2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат. Для координат векторов справедливы следующие свойства: 1. Каждая координата суммы векторов равна сумме соответствующих координат. 2. Каждая координата разности векторов равна разности соответствующих координат. 3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. 4. Каждая координата вектора равна разности соответствующих координат его конца и начала.
D² = a²+b²+c² и получим 14²=a²+(10-a)²+(a+6)² раскрываем скобки, приводим подобные и имеем квадратное уравнение: 3a²-8a-60=0, решая которое получаем а1=6см, а2 = -20 (не удовлетворяет условию задачи).
Итак, имеем: a=6см, b=4cм и c=12см. Тогда искомый объем параллелепипеда равен V=a*b*c =6*4*12 = 288см³.
ответ: V=288см³
Для координат векторов справедливы следующие свойства:
1. Каждая координата суммы векторов равна сумме соответствующих координат.
2. Каждая координата разности векторов равна разности соответствующих координат.
3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
4. Каждая координата вектора равна разности соответствующих координат его конца и начала.