ВВ1 - биссектриса угла АВD, т.к. АВ1 = В1D , то по признаку равнобедренного треугольника если медиана и биссектриса, выходящие из одной вершины , совпадают, то этот треугольник равнобедренный => треугольник АВD равнобедренный, тогда АВ = ВD => треугольник ABD - равносторонний! Т.к. АВ = ВD = АD (АВ = АD т.к. АВСD - ромб) => Все углы в равностороннем треугольнике равны по 60 градусов.
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов! Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
Противоположные стороны параллелограмма параллельны, ABKD - трапеция.
Диагонали равны (AK=BD) - трапеция равнобедренная.
Равнобедренную трапецию можно вписать в окружность.
Вписанный угол равен половине дуги, на которую опирается.
∠KAD=∪KD/2
∠BDK=∪BK/2
∠BDK=∠KAD/3 => ∪BK =∪KD/3
Смежные стороны ромба равны, AB=AD.
Боковые стороны равнобедренной трапеции равны, AB=KD.
Равные хорды стягивают равные дуги.
∪AB=∪AD=∪KD
∪AB+∪BK+∪KD+∪AD =360 => 10/3 ∪KD =360 => ∪KD=108
∠ABK =(∪AD+∪KD)/2 =∪KD =108
Подробнее - на -
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов!
Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
Аналогично угол D = 120 градусов.
ответ: 60, 120, 60, 120.
по моему так