1.Если это прямоугольный треугольник, то допустим угол при вершине В=30град, а в следствии при вершине С=60град, при этом раскладе углов катет АС, лежащий напротив угла в 30град= половине гипотенузы, т.е =30см.
2. Медиана по своим свойства делитгипотенузу пополам, т.е. ВК=КС=30см.
3. Рассмотрим образовавшийся треугольник АКС, у него: КС=30см, АС=30см, значит треугольник АКС- равнобедренный, а угол С=60град, далее...
т.к. АКС - равнобедренный треугольник угол КАС=углу АКС=(180-уголС):2=(180-60):2=60град. Значит треуг АКС равносторонний, т.к все углы у него равны, отсюда АК=КС=АС=30см
Дано: АВС-прямоугольный треугольник
ВК=КС, т.к. АК-медиана
угол А=90 град.
ВС=60см
1.Если это прямоугольный треугольник, то допустим угол при вершине В=30град, а в следствии при вершине С=60град, при этом раскладе углов катет АС, лежащий напротив угла в 30град= половине гипотенузы, т.е =30см.
2. Медиана по своим свойства делитгипотенузу пополам, т.е. ВК=КС=30см.
3. Рассмотрим образовавшийся треугольник АКС, у него: КС=30см, АС=30см, значит треугольник АКС- равнобедренный, а угол С=60град, далее...
т.к. АКС - равнобедренный треугольник угол КАС=углу АКС=(180-уголС):2=(180-60):2=60град. Значит треуг АКС равносторонний, т.к все углы у него равны, отсюда АК=КС=АС=30см
ответ:АК=30см.
а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².