Точки А и В пренадлежит двум взаимно перпендикулярным плоскостям Альфа и Бета (А пренадлежит Альфа, В пренадлежит Бета, А не пренадлежит Бета, В не пренадлежит Альфа). Расстояние от А к прямой пересечения Альфа и Бета равно 2 см, расстояние от В к этой прямой равно 4 см. Если проекция отрезка АВ на Альфа равна 3 см, то чему равна проекция АВ на Бета?
Угол α между вектором a и b (формула):
cosα=(Xa*Xb+Ya*Yb+Za*Zb)/[√(Xa²+Ya²+Xa²)*√(Xb²+Yb²+Zb²)].
Следовательно, надо найти координаты векторов СА и СВ и по приведенной выше формуле вычислить косинус угла между этими векторами.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}.
Вектор СА{6-1;2-(-5);4-8} ={5;7;-4},
Bектор СВ{-3-1;5-(-5);-7-8} = {-4;10;-15}. Тогда
cos(CA^CB) = (5*(-4)+7*10+(-4)*(-15))/[√(25+49+16)*√(16+100+225)] = 0,6279.
<ACB = arccos(0,6279) ≈ 51,1°. Это ответ.
Или по теореме косинусов:
Найдем длины сторон треугольника АВС (модули векторов) АВ, СA и СB, зная их координаты.
Вектор АВ{-9;3;-11}, вектор СА{5;7;-4}, вектор СВ{-4;10;-15}.
|AB|=√(81+9+121) = √211
|CA|=√(25+49+16) = √90
|CB|=√(16+100+225)=√341.
Тогда по теореме косинусов:
Cos(CA^CB)=(90+341-211)/(2*√90*√341) = 220/350,4 ≈ 0,6279.
ответ тот же, что и в первом случае.
РЕШЕНИЕ:
АН = 2 см ; ВЕ = 4 см ; АЕ = 3 см
• ВЕ перпендикулярен Альфа, соответсвенно ВЕ перпендикулярен АЕ
Отрезок АЕ - это проекция отрезка АВ на плоскость Альфа
Рассмотрим тр. АЕВ (угол АЕВ = 90°):
По теореме Пифагора:
АВ^2 = АЕ^2 + ВЕ^2 = 3^2 + 4^2 = 9 + 16 = 25
АВ = 5
• АН перпендикулярен Бета, соответсвенно АН перпендикулярен ВН
Отрезок ВН - это проекция отрезка АВ на плоскость Бета
Рассмотрим тр. АНВ (угол АНВ = 90°):
По теореме Пифагора:
АВ^2 = АН^2 + ВН^2
ВН^2 = 5^2 - 2^2 = 25 - 4 = 21
ВН = V21
ОТВЕТ: V21