Правильная призма — это прямая призма, основанием которой является правильный многоугольник, в случае правильной четырехугольной призмы - основанием призмы является квадрат. Правильная четырехугольная призма - прямоугольный параллелепипед. Пусть данная призма - АВСДА₁В₁С₁Д₁ Сделаем рисунок. (Во втором рисунке призма «уложена" на боковую грань для большей наглядности. ) Решение. АВ ⊥ ВС1 (если прямая перпендикуляра плоскости, она перпендикулярна любой прямой на этой плоскости). Диагональ АС₁ - гипотенуза прямоугольного треугольника АВС₁ Тогда АВ, сторона основания, противолежащая углу 30º, равна половине АС₁ АВ=ВС=СД=ДА=2 Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. D²=а²+b²+c²16=2²+2²+h²⇒ h²=16-8=8 h=√8=2√2 Площадь боковой поверхности призмы равна произведению периметра ее основания на высоту. Р=4*2=8 см Ѕ бок=8*2√2=16√2 см² -------------. Высоту призмы можно найти иначе. а) Сначала найдем диагональ ВС₁ боковой грани- она равна АС₁·cos 30°=(4 √3):2=2 √3 Высоту h трапеции найдем по т. Пифагора из треугольника ВСС₁ h² =(2 √3)²+2²=12-4=8 h=2√2 ------- б) Тот же результат получим, найдя по т. Пифагора из треугольника АВС₁ диагональ ВС₁ боковой грани, затем из прямоугольного треугольника ВСС₁ высоту призмы СС₁.
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
ответ: Площадь равнобедренного треугольника составляет 48 см2
Правильная четырехугольная призма - прямоугольный параллелепипед.
Пусть данная призма - АВСДА₁В₁С₁Д₁
Сделаем рисунок. (Во втором рисунке призма «уложена" на боковую грань для большей наглядности. )
Решение.
АВ ⊥ ВС1 (если прямая перпендикуляра плоскости, она перпендикулярна любой прямой на этой плоскости).
Диагональ АС₁ - гипотенуза прямоугольного треугольника АВС₁
Тогда АВ, сторона основания, противолежащая углу 30º, равна половине АС₁
АВ=ВС=СД=ДА=2
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
D²=а²+b²+c²16=2²+2²+h²⇒
h²=16-8=8
h=√8=2√2
Площадь боковой поверхности призмы равна произведению периметра ее основания на высоту.
Р=4*2=8 см
Ѕ бок=8*2√2=16√2 см²
-------------.
Высоту призмы можно найти иначе.
а) Сначала найдем диагональ ВС₁ боковой грани- она равна АС₁·cos 30°=(4 √3):2=2 √3
Высоту h трапеции найдем по т. Пифагора из треугольника ВСС₁
h² =(2 √3)²+2²=12-4=8
h=2√2
-------
б) Тот же результат получим, найдя по т. Пифагора из треугольника АВС₁ диагональ ВС₁ боковой грани, затем из прямоугольного треугольника ВСС₁
высоту призмы СС₁.
Применим теорему Пифагора
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
ответ: Площадь равнобедренного треугольника составляет 48 см2
Объяснение: