Опустим из точки S перпендикуляры: SH на сторону BC и SF на сторону CD. SH - наклонная, AS - перпендикуляр, AH - проекция; Согласно теореме, обратной теореме о 3 перпендикулярах, если BC перпендикулярно SH, то BC перпендикулярно AH, следовательно, AH - высота. SF - наклонная, AS - перпендикуляр, AF - проекция; Согласно теореме, обратной теореме о 3 перпендикулярах, если CD перпендикулярно SF, то CD перпендикулярно AF, следовательно, AF - высота. Рассмотрим прямоугольные треугольники SAF и SAH: 1) AS - общая сторона; 2) AF=AH - т.к. высоты ромба; Следовательно, треугольники равны по 2 катетам. Значит, SH=SF, т.е. точка S равноудалена от прямых BC и CD, что и требовалось доказать.
Найти координаты вершины Д параллелограмма АВСД, если координаты трех других его вершин А(3;-4;7), В(-5;3;-2), С(1;2;-3) В параллелограмме точка пересечения диагоналей делит их пополам. Найдем координаты этой точки, разделив вектор АС пополам (сумма координат начала и конца, деленная пополам): О(2;-1;2). А теперь находим координаты вершины D, зная координаты начала вектора ВD (точки В) и его середины (точки О). 2=(Хd-5)/2, отсюда Хd=9. -1=(Yd+3)/2, откуда Yd=-5. 2=(Zd-2)/2, отсюда Zd=6. Итак, координаты вершины D равны D(9;-5;6). ответ: D(9;-5;6).
SH - наклонная, AS - перпендикуляр, AH - проекция;
Согласно теореме, обратной теореме о 3 перпендикулярах, если BC перпендикулярно SH, то BC перпендикулярно AH, следовательно, AH - высота.
SF - наклонная, AS - перпендикуляр, AF - проекция;
Согласно теореме, обратной теореме о 3 перпендикулярах, если CD перпендикулярно SF, то CD перпендикулярно AF, следовательно, AF - высота.
Рассмотрим прямоугольные треугольники SAF и SAH:
1) AS - общая сторона;
2) AF=AH - т.к. высоты ромба;
Следовательно, треугольники равны по 2 катетам. Значит, SH=SF, т.е. точка S равноудалена от прямых BC и CD, что и требовалось доказать.
В параллелограмме точка пересечения диагоналей делит их пополам. Найдем координаты этой точки, разделив вектор АС пополам (сумма координат начала и конца, деленная пополам):
О(2;-1;2).
А теперь находим координаты вершины D, зная координаты начала вектора ВD (точки В) и его середины (точки О).
2=(Хd-5)/2, отсюда Хd=9.
-1=(Yd+3)/2, откуда Yd=-5.
2=(Zd-2)/2, отсюда Zd=6.
Итак, координаты вершины D равны D(9;-5;6).
ответ: D(9;-5;6).