Совершив геометрические построения, согласно условию задачи, увидим, что у нас образовались треугольники KM1P1 и KM2P2 . У них общий угол K, а, поскольку плоскости α и β параллельны, то прямые М1 Р1 и М2 Р2 , лежащие на этих плоскостях, также параллельны. Поскольку параллельные прямые, пересекающие третью, образуют с ней равные углы, то треугольники KM1P1 и KM2P2 - подобны по трем углам. То есть имеют равные углы.
Поскольку треугольники KM1P1 и KM2P2 подобны, то М1 Р1 / М2 Р2 = КМ1 / KМ2
Обозначим KМ2 как х. Таким образом : 4 / 9 = 8 / x 4x = 72 x = 18
У них общий угол K, а, поскольку плоскости α и β параллельны, то прямые М1 Р1 и М2 Р2 , лежащие на этих плоскостях, также параллельны. Поскольку параллельные прямые, пересекающие третью, образуют с ней равные углы, то треугольники KM1P1 и KM2P2 - подобны по трем углам. То есть имеют равные углы.
Поскольку треугольники KM1P1 и KM2P2 подобны, то
М1 Р1 / М2 Р2 = КМ1 / KМ2
Обозначим KМ2 как х. Таким образом :
4 / 9 = 8 / x
4x = 72
x = 18