Лучи оа,ов,ос перпендикулярны по парно. пункт первый: оа=ов=ос=5см нужно найти периметр треугольника авс. пункт второй : оа=ов=ос=а нужно найти периметр треугольника авс. пункт третий : оа=ов=3дм ,ос=4дм нужно найти периметр треугольника авс.
Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30° диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15° проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной) Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15° (ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
ответ:KN=KM=6 корней из 3
Объяснение:
MO=ON(это радиусы)
Доказываем равенство треугольников по свойству касательных из одной точки к окружности,
Тогда KON=MOK и они по 60 градусов. (120/2=60) градусов.
Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов.
2ON=OK
2ON=12 /2(поделили две части)
ON=6
Затем находим всё по теореме Пифагора.
KN+ON=OK(все величины во второй степени)
KN2+36=144
KN2=144-36=108 градусов.
корень из KN=корень из 108 градусов и это 6 корней из 3.
KN=KM(по свойству отрезков касательных)
ответ:KN=KM=6 корней из 3.
Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30°
диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15°
проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной)
Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15°
(ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
S=p*r, где p-полупериметр
p=4*AB/2=4*4k/2=8k
S=8k*k=8k²
ответ: 8k²