1) Т к ВТ-биссектриса, то угол АВТ=ТВС=60 градусов.В паралелограмме противолежащие стороны параллельны и равны т е ВТ-секущая относительно параллельных прямых ВС и АК => угол СВТ=ВТА=60градусов, тогда треугольник АВТ-равнобокий, а т к два угла по 60 градусов, то третий угол тоже 60 градусов, значит треугольник равносторонний => АВ=АТ=ВТ=15см.
2) т к противолежащие стороны в паралелограмме равны, то ВС=АК=15+10=25см.
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.
Первый признак Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны
Второй признак Если угол одного треугольника равен углу другого, а стороны, образующие тот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны
Третий признак Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.
Пусть и - такие треугольники, что , и .
Совместим треугольник с треугольником так, чтобы точка A совпала c и сторона AC пошла по . Тогда вследствие равенства этих сторон, точка C совместится с , а вследствие равенства углов и сторона AB пойдет по , а вследствие равенства этих сторон точка B совпадет с , поэтому сторона CB совместиться с (так как две точки можно соединить только одной прямой). Таким образом, треугольники совпадут, то есть будут равны.
1) Т к ВТ-биссектриса, то угол АВТ=ТВС=60 градусов.В паралелограмме противолежащие стороны параллельны и равны т е ВТ-секущая относительно параллельных прямых ВС и АК => угол СВТ=ВТА=60градусов, тогда треугольник АВТ-равнобокий, а т к два угла по 60 градусов, то третий угол тоже 60 градусов, значит треугольник равносторонний => АВ=АТ=ВТ=15см.
2) т к противолежащие стороны в паралелограмме равны, то ВС=АК=15+10=25см.
Рассмотрим треугольник АВС:
По теореме косинусов: АС² = 15² +25² -2*15*25*cos120 = 225+ 625 + 375 = 1225
АС = √1225 = 35см.
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.
Первый признак
Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны
Второй признак
Если угол одного треугольника равен углу другого, а стороны, образующие тот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны
Третий признак
Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.
Пусть и - такие треугольники, что , и .
Совместим треугольник с треугольником так, чтобы точка A совпала c и сторона AC пошла по . Тогда вследствие равенства этих сторон, точка C совместится с , а вследствие равенства углов и сторона AB пойдет по , а вследствие равенства этих сторон точка B совпадет с , поэтому сторона CB совместиться с (так как две точки можно соединить только одной прямой). Таким образом, треугольники совпадут, то есть будут равны.