Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
cosB = BC/AB = 30/50 = 6/10 = 0,6
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему катету.
tgB = AC/BC = 40/30 = 4/3
ответ: sinB = 0,8; cosB = 0,6; tgB = 4/3.
laminiaduo7 и 4 других пользователей посчитали ответ полезным!
2
5,0
(2 оценки)
Остались вопросы?
НАЙДИ НУЖНЫЙ
ЗАДАЙ ВОПРОС
Новые вопросы в Геометрия
В прямоугольном треугольнике гипотенуза bc=50 катет ac=40 найдите площадь треугольника
точки М,N,K ділять коло на три дуги градусні міри яких відносяться як 3:4:4 знайти кути трикутника MNK
Скласти рівняння кола з центром О(-4; 7) і радіусом 4. A) (x — 4)2 + (у +7)2 = 4; Б) (х + 4)2 + (у – 7)2 = 16; В) (x+4)2 + (у – 7)2 = 4; Г) (x — 4)2 +…
доказать равенство треугольников
Основа рівнобедреного трикутника 18 см . Знайдіть довжину відрізка , що сполучає середину бічних сторін трикутника
Відрізок, що сполучає середини бічних сторін рівнобедреного трикутника, дорівнює 9 см. Знайдіть основу трикутника. до іть будь ласка
дано: треугольник ABC BD-медиана BD=DE AB=5,8 см BC=7,4 см AC=9 см надо найти CE
Основи трапеції дорівнюють 18 см і 6 см. Середня лінія поділяється діагоналями на три частини. Знайдіть їхні довжини. до іть будь ласка
4) В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Периметр треугольника АВС равен 32 см, а периметр треугольника АВМ равен 24…
4) Найдите площадь равностороннего треугольника, отсекаемого
от данного треугольника его средней линией,
если площадь данного треугольника равна 48см2.
АВ = 8√3 (из выражения S=а2*√3/2)
S=8√3*√3/4=12
ответ: 12
5) Периметр равностороннего треугольника АВС равен 24см. Найдите длину средней линии этого треугольника.
Р=24 => а=8 => средняя линия равна половине стороны (т.к. равносторонний) , равна 4
ответ: 4
Карточка 2
1) Найти угол АСВ, если угол
АОВ равен 160°
дуга АВ – общая углов АСВ – вписанного и АОВ – центрального => угол АСВ = ½ угла АОВ = 80
ответ: 80
2) Решение:
По формуле а2 + в2 = с2
а=12-4=8, в=15
82 + 152=с2
с= 17
ответ:17
3) Найдите площадь данного равностороннего треугольника, если
площадь треугольника, отсекаемого от него
средней линией, равна 6 см2.
Можно выделить закономерность. Треугольник в равностороннем треугольнике, отсекаемый средней линией будет подобен данному треугольник. Коэффициент подобия будет равен 1/2. Значит в данной задаче нужно умножить 6 на 4.
6*4=24
ответ: 24
4) Средняя линия равностороннего треугольника АВС равна 8см. Найдите периметр этого треугольника
Средняя линия = 8 см => а= 2*8=16
Р=а*3 = 16*3 = 48
ответ: 48 см2
5) Из квадрата со стороной 10см вырезан прямоугольник со сторонами 3см и 4см. Найдите площадь оставшейся части.
Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.
sinB = AC/AB = 40/50 = 8/10 = 0,8
Квадрат гипотенузы равен сумме квадратов катетов (т. Пифагора).
AB² = AC²+BC² ⇒ BC² = AB²-AC²
По формуле разности квадратов:
BC² = (AB-AC)(AB+AC) = (50-40)(50+40) = 10·90 = 10²·3²
BC = 10·3 = 30
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
cosB = BC/AB = 30/50 = 6/10 = 0,6
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему катету.
tgB = AC/BC = 40/30 = 4/3
ответ: sinB = 0,8; cosB = 0,6; tgB = 4/3.
laminiaduo7 и 4 других пользователей посчитали ответ полезным!
2
5,0
(2 оценки)
Остались вопросы?
НАЙДИ НУЖНЫЙ
ЗАДАЙ ВОПРОС
Новые вопросы в Геометрия
В прямоугольном треугольнике гипотенуза bc=50 катет ac=40 найдите площадь треугольника
точки М,N,K ділять коло на три дуги градусні міри яких відносяться як 3:4:4 знайти кути трикутника MNK
Скласти рівняння кола з центром О(-4; 7) і радіусом 4. A) (x — 4)2 + (у +7)2 = 4; Б) (х + 4)2 + (у – 7)2 = 16; В) (x+4)2 + (у – 7)2 = 4; Г) (x — 4)2 +…
доказать равенство треугольников
Основа рівнобедреного трикутника 18 см . Знайдіть довжину відрізка , що сполучає середину бічних сторін трикутника
Відрізок, що сполучає середини бічних сторін рівнобедреного трикутника, дорівнює 9 см. Знайдіть основу трикутника. до іть будь ласка
дано: треугольник ABC BD-медиана BD=DE AB=5,8 см BC=7,4 см AC=9 см надо найти CE
Основи трапеції дорівнюють 18 см і 6 см. Середня лінія поділяється діагоналями на три частини. Знайдіть їхні довжини. до іть будь ласка
4) В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Периметр треугольника АВС равен 32 см, а периметр треугольника АВМ равен 24…
Объяснение:
Карточка 1
1)
АОВ – р/б => АВ=ОВ=8
ответ: 8
2) Найти: угол АСВ, если
угол АОВ = 84°
угол АОВ – центр. Угол , Угол АСВ - вписанный
дуга АВ – общая => угол АСВ = ½ угла АОВ = 42
ответ: 42
3)
22= 1,22 + а2
а=1,6
ответ: 1,6
4) Найдите площадь равностороннего треугольника, отсекаемого
от данного треугольника его средней линией,
если площадь данного треугольника равна 48см2.
АВ = 8√3 (из выражения S=а2*√3/2)
S=8√3*√3/4=12
ответ: 12
5) Периметр равностороннего треугольника АВС равен 24см. Найдите длину средней линии этого треугольника.
Р=24 => а=8 => средняя линия равна половине стороны (т.к. равносторонний) , равна 4
ответ: 4
Карточка 2
1) Найти угол АСВ, если угол
АОВ равен 160°
дуга АВ – общая углов АСВ – вписанного и АОВ – центрального => угол АСВ = ½ угла АОВ = 80
ответ: 80
2) Решение:
По формуле а2 + в2 = с2
а=12-4=8, в=15
82 + 152=с2
с= 17
ответ:17
3) Найдите площадь данного равностороннего треугольника, если
площадь треугольника, отсекаемого от него
средней линией, равна 6 см2.
Можно выделить закономерность. Треугольник в равностороннем треугольнике, отсекаемый средней линией будет подобен данному треугольник. Коэффициент подобия будет равен 1/2. Значит в данной задаче нужно умножить 6 на 4.
6*4=24
ответ: 24
4) Средняя линия равностороннего треугольника АВС равна 8см. Найдите периметр этого треугольника
Средняя линия = 8 см => а= 2*8=16
Р=а*3 = 16*3 = 48
ответ: 48 см2
5) Из квадрата со стороной 10см вырезан прямоугольник со сторонами 3см и 4см. Найдите площадь оставшейся части.
4*3=12
102=100
100-12=88 (см2)
ответ: 88 см2
Объяснение: