Вычисляем для начала длину медианы треугольника, обозначим её за m.
В правильном (равностороннем) треугольнике m=(√3/2)*a, где a- сторона треугольника.
m=(√3/2)*12=6√3 см
Далее воспользуемся следующим свойством медиан треугольника:
"Медианы треугольника пересекаются в одной точке (называемой центроидом), и делятся этой точкой на две части в отношении 2:1, считая от вершины"
Таким образом меньший участок медианы равен:
6√3/3=2√3
И теперь по теореме Пифагора находим нужное расстояние (рисунок уж я не стал делать...):
√((2√3)²+2²)=√(12+4)=√16=4 см
ответ:Древняя задача.
Объяснение: Полагаю речь идет о разделении угла с линейки без делений и циркуля.
1. На два угол делится просто - надо построить биссектрису.
Строится она легко.
а. Выставить произвольный раствор циркуля
2. Отметить на сторонах угла отрезки, равные раствору циркуля ОА и ОВ.
3. С центром в точках А и В построить дуги, которые пересекаются.
4. Точка О и получившаяся точка пересечения дают луч, который и есть биссектриса.
Древняя задача о делении угла на 3 равных части решается только в некоторых случаях, общего решения не существует.
Вычисляем для начала длину медианы треугольника, обозначим её за m.
В правильном (равностороннем) треугольнике m=(√3/2)*a, где a- сторона треугольника.
m=(√3/2)*12=6√3 см
Далее воспользуемся следующим свойством медиан треугольника:
"Медианы треугольника пересекаются в одной точке (называемой центроидом), и делятся этой точкой на две части в отношении 2:1, считая от вершины"
Таким образом меньший участок медианы равен:
6√3/3=2√3
И теперь по теореме Пифагора находим нужное расстояние (рисунок уж я не стал делать...):
√((2√3)²+2²)=√(12+4)=√16=4 см
ответ:Древняя задача.
Объяснение: Полагаю речь идет о разделении угла с линейки без делений и циркуля.
1. На два угол делится просто - надо построить биссектрису.
Строится она легко.
а. Выставить произвольный раствор циркуля
2. Отметить на сторонах угла отрезки, равные раствору циркуля ОА и ОВ.
3. С центром в точках А и В построить дуги, которые пересекаются.
4. Точка О и получившаяся точка пересечения дают луч, который и есть биссектриса.
Древняя задача о делении угла на 3 равных части решается только в некоторых случаях, общего решения не существует.