Построим окружность с центром О. Т.к. Окружность -это геометрическое место точек, равноудаленных от центра, а по условию ОА=ОВ, значит точки А и В лежат на окружности, ОА и ОВ являются радиусами, АВ -хорда. Угол АОВ, образованный двумя радиусами, -центральный и равен 2(180-АСВ). Т.к. Точки О и С в разных полуплоскостях относительно АВ, то предположим, что С тоже лежит на окружности. Тогда угол АСВ является вписанным углом (вершина С-лежит на окружности, стороны СА и СВ пересекают окружность), опирающимся на дугу АВ. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит дуга АСВ равна 2(180-АСВ), тогда дуга АВ будет равна 360-2(180-АСВ)=2АСВ. Величина вписанного угла АСВ должна быть в два раза меньше центрального угла, опирающегося на ту же дугу АВ, проверяем угол АСВ=2АСВ/2=АСВ. Равенство верное, значит точка С тоже лежит на этой окружности, что и требовалось доказать.
Пусть параллельные прямые А и В пересечены секущей MN.Докажем, что накрест лежащие углы, например 1 и 2,равны. Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение невнрно и угол 1 = 2.
Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение невнрно и угол 1 = 2.