Стороны параллелограмма a, b площадь параллелограмма может быть вычислена: 4*a = 6*b => b = 4a/6 = 2a/3 периметр: 2*(a+b) = 40 a+b = 20 a + 2a/3 = 20 5a/3 = 20 a = 12 b = 8 высота, равная 4, в моих обозначениях проведена к стороне а (т.к. площадь вычисляется как произведение стороны на опущенную на нее высоту...))) следовательно, высота, равная 4, находится против стороны b... получится прямоугольный треугольник с гипотенузой b=8 и катетом = 4 катет, лежащий против угла в 30 градусов, равен половине гипотенузы... следовательно, острый угол параллелограмма равен 30 градусов...
ответ- 8 и 20, пусть дана трапеция ABCD , KL- средняя линия, MN- отрезок, соединяющий середины оснований, продолжим боковые стороны, они пересекутся под углом 90 градусов так как 44+46=90 и 180-90=90 по теореме о сумме углов треугольника в треугольнике PAD. пусть BC=a и AD=b. заметим, что прямая MN проходит через точку P( если провести прямую PN, то она пересечет BC посередине, потому что N- середина AD и BC параллельно AD, понятно?) медиана в прямоугольном треугольнике равна половине основания- PM=a/2. PN=b/2. PN=PM+MN=a/2 + 6. средняя линия равна полусумме оснований- KL = (AD + BC)/2. 14=(a+b)/2. решаем систему: 1) (a+b)/2=14. 2) b/2=a/2 + 6. решением является пара чисел a=8 и b=20
площадь параллелограмма может быть вычислена:
4*a = 6*b => b = 4a/6 = 2a/3
периметр: 2*(a+b) = 40
a+b = 20
a + 2a/3 = 20
5a/3 = 20
a = 12
b = 8
высота, равная 4, в моих обозначениях проведена к стороне а (т.к. площадь вычисляется как произведение стороны на опущенную на нее высоту...)))
следовательно, высота, равная 4, находится против стороны b...
получится прямоугольный треугольник с гипотенузой b=8 и катетом = 4
катет, лежащий против угла в 30 градусов, равен половине гипотенузы...
следовательно, острый угол параллелограмма равен 30 градусов...