Строим сторону АВ = 14 м, взяв для простоты 1 мм за 1 м. С вершинами в точках А и В, со стороной АВ строим углы в 120°. Откладываем на полученных сторонах отрезки АС = BD = 14 м и строим с вершинами в точках С и D углы 120°. Откладываем на полученных сторонах СМ = DP = 14 м, соединяем точки М и Р. Шестиугольник ABDPMC есть план Семиглавой башни. Этот многоугольник называется правильным, так как у него стороны и углы равны. Точка О есть центр правильного многоугольника. Из него сторона АВ видна под углом AOB.
Объяснение:
Строим сторону АВ = 14 м, взяв для простоты 1 мм за 1 м. С вершинами в точках А и В, со стороной АВ строим углы в 120°. Откладываем на полученных сторонах отрезки АС = BD = 14 м и строим с вершинами в точках С и D углы 120°. Откладываем на полученных сторонах СМ = DP = 14 м, соединяем точки М и Р. Шестиугольник ABDPMC есть план Семиглавой башни. Этот многоугольник называется правильным, так как у него стороны и углы равны. Точка О есть центр правильного многоугольника. Из него сторона АВ видна под углом AOB.
• Тангенс - это отношение противолежащего катета к прилежащему катету в прямоугольном треугольнике
• Очевидно, что ΔAOB - не является прямоугольным, поэтому проведём из точки O высоту OH на сторону AB треугольника AOB
Тогда тангенс будет равен сумме тангенсов углов BOH и AOH.
• Найдём тангенс угла BOH в прямоугольном ΔBOH:
tg ∠BOH = BH/HO = 3/3 = 1
• Найдём тангенс угла AOH в прямоугольном ΔAOH:
tg ∠AOH = AH/HO = 5/3
• Суммируем значения этих двух тангенсов:
tg ∠AOB = tg ∠BOH + tg ∠AOH = 1 + 5/3 = 8/3 ≈ 2,67
ответ: tg ∠AOB = 8/3