Математика
2. Виконати завдання: а).У трикутнику АВС відомо, що АВ = 7√2 см, кут В=60°, кут С=45°. Знайти сторону АС.
б). Знайти кут В трикутника АВС, якщо:АС=2см, ВС=√6 см, кут А=60°.
в). У трикутнику АВС відомо, що АС=5√2 см, кут В= 45°. Знайти радіус кола, описаного навколо трикутника АВС.
г). Знайти радіус кола, описаного навколо рівнобедреного трикутника з основою16см і бічною стороною 17см
д). Основи рівнобічної трапеції дорівнюють 2см і 12см, а бічна сторона - 13см. Знайти радіус кола, описаного навколо трапеції.
6 см
Объяснение:
Точку пересечения АВ и А1В1 обозначим — Н (точка, в которой прямая АВ пересекает плоскость а)через точку С проведем прямую , параллельную прямой А1В1, которая соответственно пересечёт продолжение отрезка АА1 в точке А2, а отрезок ВВ1 в точке В2 (смотри прикреплённое изображение). Следовательно, А2В2 || А1В1.1) ∆ВВ1Н:
СВ2 || НВ1 (так как А2В2 || А1В1).СС1 и ВВ1 — перпендикуляры к В1Н. По условию СС1=4, ВВ1=10.Тогда В1В2=СС1=4 см, В2В=ВВ1-В2В1=10-4=6 см.
2) А1А2В2В1:
А2А1, СС1 и В2В1 — перпендикуляры к В1А1. А2В2 || А1В1.Тогда А2А1 = СС1 = В2В1 = 4 см.
3) ∆А2АС и ∆СВ2В:
<А1СВ = <В2СВ (как вертикальные углы),<АА2С=<ВВ2С=90° (так как А2А1, СС1 и В2В1 — перпендикуляры к В1А1, но А2В2 || А1В1. соответственно А2А1, СС1 и В2В1 — перпендикуляры к А2В2.)Тогда ∆ А2АС ~ ∆В2ВС,
отсюда следует, что
А2А/В2В = АС/ВС = А2С/В2С.
Из условия известно, что АС/ВС = 5/3.
тогда А2А / В2В = 5 / 3.
А2А = АА1 + А1А2 = АА1 + 4 (см).
В2В = 6 см.
(АА1+4) / 6 = 5 / 3 |×6
6*(АА1+4)/6 = 6*5/3
АА1+4 = 2*5=10
АА1=10-4=6 см
Чертеж к решению - во вложении.
Т.к. О - центр вписанной в ΔАВС окружности, то О - точка пересечения биссектрис углов ΔАВС. Значит, АО и ВО - биссектрисы.
Т.к. О1 - центр внеписанной окружности то О1 - точка пересечения биссектрис внешних углов ΔАВС. Значит, АО1 и ВО1 - биссектрисы.
Пусть α - величина внешнего угла ΔАВС при вершине А, тогда (180°-α) - величина внутреннего угла ΔАВС при вершине А, т.к. эти углы - смежные.
Тогда
Аналогично,
Рассмотрим четырехугольник АОВО1.
У него сумма противолежащих углов А и В равна 90°+90° = 180°.
Т.к. сумма всех углов этого выпуклого четырехугольника равна 360°, то сумма двух других противолежащих при вершинах О и О1 также равна 180°.
Таким образом, воспользуемся утверждением: если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Делаем вывод, точки А, В, О и О1 лежат на одной окружности.
Доказано.