Маятник в виде груза, подвешенного на нитке, отклонили от положения равновесия на угол 65^{\circ}. Длина нити равна 30 см. На сколько изменилась высота груза по сравнению с положением равновесия ОТВЕТ И ОБЪЯСНЕНИЕ
Свойство параллельного переноса: при таком переносе прямая имеет свойство переходить в такую же параллельную прямую. Задача сводится к построению параллельных прямых и имеет несколько вариантов. Вот два из них: Дана прямая Зх-4у-5=0 или у=(Зх-5)/4. Строим эту прямую по двум точкам: при Х=0 => у=-5/4=1и1/4. при у=0 => х=5/3=1и2/3. Вектор нормали к этой прямой п(3;-4). Этот вектор - общий для всех прямых, параллельных данной. 1. Общее уравнение прямой, проходящей через точку О(0;0) и имеющей вектор нормали n(3;4): 3(х-0)+(-4)(у-0)=0 или Зх-4у=0 или у=(3/4)х. Строим эту прямую по двум точкам: приХ=0 => у=0. при х=2 => х=3/2 =1и 1/2. 2. Общее уравнение прямой, проходящей через точку К(3;-2) и имеющей вектор нормали n(3;4): 3(х-3)+(-4)(у-(-2))=0 или Зх-4у-17=0 или у=(3х-17)/4 или y=(3/4)*x-9/4. Строим эту прямую по двум точкам: при Х=0 => у=-17/4=-4и1/4. при y=0 => х=17/3 или 5и1/3. Второй вариант: Дана прямая Зх-4у-5=0 или у=(Зх-5)/4 или y=(3/4)*x-5/4. Строим эту прямую по двум точкам: при Х=0 => у=-5/4=1и1/4. при у=0 => х=5/3=1и2/3. Мы знаем, что угловые коэффициенты параллельных прямых равны, тогда 3/4 - угловой коэффициент прямой, уравнение которой нам требуется составить. 1). По условию эта прямая проходит через точку О(0;0), следовательно, ее уравнение: (y-0)=(3/4)*(x-0) или y=(3/4)*x. 2). Прямая проходит через точку К(3;-2), следовательно, ее уравнение: (y-(-2))=(3/4)*(x-3) или y=(3/4)*x-9/4. Мы видим, что уравнения искомых прямых одинаковы. остается построить эти прямые.
Под углом между скрещивающимися прямыми понимается угол между параллельными им прямыми, проходящими через одну точку. Проведем через точку `M` в плоскости основания прямую `MK`, параллельную `CL`(`K` - точка ее пересечения со стороной `AB`. Тогда искомый угол - это `/_DMK`. Найдем его с теоремы косинусов из треугольника `DMK` Так все ребра тетраэдра равны (вспоминаем определение правильного тетраэдра) , то треугольники `DBC`,`ABC`и `ADB` правильные и `CL=DM=DL=sqrt(3)/2`. `MK` - средняя линия в треугольнике `BCL`: `MK=sqrt(3)/4` `DK` находим из прямоугольного треугольника `DLK`: `DK=sqrt((1/4)^2+(sqrt(3)/2)^2)=sqrt(13)/4 По теореме косинусов `DK^2=MK^2+DM^2-2*MK*DMcos(/_DMK)` Откуда `cos(/_DMK)=1/6` `/_DMK=arc cos(1/6)` ответ: `arc cos(1/6)`
при таком переносе прямая имеет свойство переходить в такую же параллельную прямую.
Задача сводится к построению параллельных прямых и имеет несколько вариантов. Вот два из них:
Дана прямая Зх-4у-5=0 или у=(Зх-5)/4. Строим эту прямую по двум точкам:
при Х=0 => у=-5/4=1и1/4.
при у=0 => х=5/3=1и2/3.
Вектор нормали к этой прямой п(3;-4). Этот вектор - общий для всех прямых, параллельных данной.
1. Общее уравнение прямой, проходящей через точку О(0;0) и имеющей вектор нормали n(3;4):
3(х-0)+(-4)(у-0)=0 или Зх-4у=0 или у=(3/4)х.
Строим эту прямую по двум точкам:
приХ=0 => у=0.
при х=2 => х=3/2 =1и 1/2.
2. Общее уравнение прямой, проходящей через точку К(3;-2) и имеющей вектор нормали n(3;4):
3(х-3)+(-4)(у-(-2))=0 или Зх-4у-17=0 или у=(3х-17)/4 или y=(3/4)*x-9/4.
Строим эту прямую по двум точкам:
при Х=0 => у=-17/4=-4и1/4.
при y=0 => х=17/3 или 5и1/3.
Второй вариант:
Дана прямая Зх-4у-5=0 или у=(Зх-5)/4 или y=(3/4)*x-5/4.
Строим эту прямую по двум точкам:
при Х=0 => у=-5/4=1и1/4.
при у=0 => х=5/3=1и2/3.
Мы знаем, что угловые коэффициенты параллельных прямых равны,
тогда 3/4 - угловой коэффициент прямой, уравнение которой нам требуется составить.
1). По условию эта прямая проходит через точку О(0;0), следовательно, ее уравнение:
(y-0)=(3/4)*(x-0) или y=(3/4)*x.
2). Прямая проходит через точку К(3;-2), следовательно, ее уравнение:
(y-(-2))=(3/4)*(x-3) или y=(3/4)*x-9/4.
Мы видим, что уравнения искомых прямых одинаковы.
остается построить эти прямые.
Так все ребра тетраэдра равны (вспоминаем определение правильного тетраэдра) , то треугольники `DBC`,`ABC`и `ADB` правильные и `CL=DM=DL=sqrt(3)/2`.
`MK` - средняя линия в треугольнике `BCL`: `MK=sqrt(3)/4`
`DK` находим из прямоугольного треугольника `DLK`: `DK=sqrt((1/4)^2+(sqrt(3)/2)^2)=sqrt(13)/4
По теореме косинусов `DK^2=MK^2+DM^2-2*MK*DMcos(/_DMK)`
Откуда `cos(/_DMK)=1/6`
`/_DMK=arc cos(1/6)`
ответ: `arc cos(1/6)`