мы знаем, что площадь ромба равна половине произведения его диагоналей.. одна диагональ есть.. нужно найти вторую, мы знаем , что диагонали пересекаются под прямым углом и точка пересевения делит диагонали пополам.. из прямоугольного трегольника находим половину другой диагонали.. 169-144=25 и корень из 25 равен 5 . следовательно вторая диагональ равна 10.. ну и находим площадь.. 24*10=240 и пополам 120..
или
диагональ делит диагональ на 2 равные части, значит 24:2=12 дальше по теореме пифагора: 13 в квадрате= 12 в квадрате + х в квадрате 169=144+х в квадрате х в квадрате=25 х1=5; х2= -5, что не удовлетворяет условию задачи х - это у нас половина второй диагонали, х=5, значит вторая диагональ равна 10 S ромба = 1/2 а*б, следовательно S ромба = 1/2 (24*10) = 1/2 * 240 = 120 ответ: S ромба = 120
Если все грани наклонены под одинаковыми углами, то высота пирамиды падает в центр вписанной окружности, то есть в точку О пересечения биссектрис треугольника. Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой. AC = 5; BC = 12; AB = 13 Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30 Найдем радиус вписанной окружности. r = OK = OM = ON = 2S/P = 2*30/30 = 2 см Высота H = OD = 4√2 см Апофемы, перпендикулярные к ребрам основания DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см Площади боковых граней S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см. S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см. S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см. S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.
мы знаем, что площадь ромба равна половине произведения его диагоналей.. одна диагональ есть.. нужно найти вторую, мы знаем , что диагонали пересекаются под прямым углом и точка пересевения делит диагонали пополам.. из прямоугольного трегольника находим половину другой диагонали..
169-144=25 и корень из 25 равен 5 . следовательно вторая диагональ равна 10.. ну и находим площадь.. 24*10=240 и пополам 120..
или
диагональ делит диагональ на 2 равные части, значит 24:2=12
дальше по теореме пифагора: 13 в квадрате= 12 в квадрате + х в квадрате
169=144+х в квадрате
х в квадрате=25
х1=5; х2= -5, что не удовлетворяет условию задачи
х - это у нас половина второй диагонали, х=5, значит вторая диагональ равна 10
S ромба = 1/2 а*б, следовательно S ромба = 1/2 (24*10) = 1/2 * 240 = 120
ответ: S ромба = 120
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.