В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Мишка1911
Мишка1911
01.02.2021 07:04 •  Геометрия

Медиана bm и биссектриса ap треугольника abc пересекаются в точке k, длина стороны ac втрое больше длины стороны ab. найдите отношение площади треугольника akm к площади четырехугольника kpcm

Показать ответ
Ответ:
vikhrovdavid
vikhrovdavid
01.10.2020 05:36

Медиана тр-ка делит тр-к на два равновеликих. То есть Sabm = Smbc = 1/2(Sabc)

Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВР/РС = 1/3. В таком же отношении делится биссектрисой и площадь тр-ка, т.е Sabp/Sapc = 1/3. То есть Sabp = 1/4(Sabc), а Sapc = 3/4(Sabc). В тр-ке АВМ та же биссектриса делит площадь тр-ка АВМ в отношении 1:1,5 (так как АМ = 1/2 АС, потому что ВМ - медиана). Отсюда Sakm = 3/4*Sabm = 1/2:4*3 = 3/8(Sabc) 

Smkpc = Sapc-Sakm = 3/4 - 3/8 = 3/8.

Тогда Sakm/Smkpc = (3/8):(3/8) = 1/1.

 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота