66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²
Дано: 1) Для начала найдем гипотенузу по т. Пифагора:
АС=7 ║ АВ=√7²+15²=√49+225=√274
ВС=15║ 2) Синус - отношение проти-го катета к гипотенузе.
sin∠B=AC/AB=7/√274
Найти: 3) Косинус - отношение прил-го катета к гипотенузе.
sin, cos, ctg, tg cos∠B=ВС/АВ= 15/√274
4) Тангенс - отношение проти-го катета к прил-му.
tg∠B=АС/ВС=7/15
5) Котангенс - отношение косинуса к синусу.
ctg∠B=cos/sin= (15/√274)/(7/√274)
Или отношение прил-го катета к проти-му.
ctg∠B=BC/AC=15/7=2 1/7
66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²
Дано: 1) Для начала найдем гипотенузу по т. Пифагора:
АС=7 ║ АВ=√7²+15²=√49+225=√274
ВС=15║ 2) Синус - отношение проти-го катета к гипотенузе.
sin∠B=AC/AB=7/√274
Найти: 3) Косинус - отношение прил-го катета к гипотенузе.
sin, cos, ctg, tg cos∠B=ВС/АВ= 15/√274
4) Тангенс - отношение проти-го катета к прил-му.
tg∠B=АС/ВС=7/15
5) Котангенс - отношение косинуса к синусу.
ctg∠B=cos/sin= (15/√274)/(7/√274)
Или отношение прил-го катета к проти-му.
ctg∠B=BC/AC=15/7=2 1/7