Дан ромб АВСD. Точка О - точка пересечения его диагоналей. Точка Р - точка пересечения перпендикуляра ВН (высоты ромба) и большей диагонали АС. В ромбе диагонали взаимно перпендикулярны и точкой пересечения делятся пополам. Большая диагональ ромба равна сумме данных нам отрезков: 3,5+12,5=16см. Половина ее равна 8см. В прямоугольном треугольнике РВС (<PBC=90°, дано) ВО - высота из прямого угла и по свойствам этой высоты равна ВО=√(РО*ОС). ОС=8 (половина диагонали), РО=АО-АР=8-3,5=4,5. Тогда ВО=√(4,5*8)=√(9*4)=6см. ВО - это половина меньшей диагонали. Значит меньшая диагональ равна 12см. Сторона ромба АВ найдется из прямоугольного треугольника АОВ по Пифагору: АВ=√(АО²+ВО²)=√(64+36)=10см. ответ: сторона ромба равна 10см, его меньшая диагональ равна 12см.
Цитата: "Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр". Радиус вписанной в треугольник окружности находится по формуле: r=√[(p-a)(p-b)(p-c)/p, где a,b,c - стороны, а р - полупериметр треугольника. В нашем случае р=(20+21+29):2=35см. Тогда r=√[(15*14*6)/35]=6см. В прямоугольных треугольниках с катетами, равными r(радиус вписанной окружности) и h (высота пирамиды) острый угол равен 45°, значит катеты равны и h=r=6см. ответ: высота пирамиды равна 6см.
В ромбе диагонали взаимно перпендикулярны и точкой пересечения делятся пополам. Большая диагональ ромба равна сумме данных нам отрезков: 3,5+12,5=16см. Половина ее равна 8см. В прямоугольном треугольнике РВС (<PBC=90°, дано) ВО - высота из прямого угла и по свойствам этой высоты равна ВО=√(РО*ОС). ОС=8 (половина диагонали), РО=АО-АР=8-3,5=4,5. Тогда ВО=√(4,5*8)=√(9*4)=6см.
ВО - это половина меньшей диагонали. Значит меньшая диагональ равна 12см. Сторона ромба АВ найдется из прямоугольного треугольника АОВ по Пифагору: АВ=√(АО²+ВО²)=√(64+36)=10см.
ответ: сторона ромба равна 10см, его меньшая диагональ равна 12см.
Радиус вписанной в треугольник окружности находится по формуле:
r=√[(p-a)(p-b)(p-c)/p, где a,b,c - стороны, а р - полупериметр треугольника.
В нашем случае р=(20+21+29):2=35см.
Тогда r=√[(15*14*6)/35]=6см.
В прямоугольных треугольниках с катетами, равными r(радиус вписанной окружности) и h (высота пирамиды) острый угол равен 45°, значит катеты равны и h=r=6см.
ответ: высота пирамиды равна 6см.