6х+5у-30=0 5y = -6x + 30 у = -6/5x + 6 перпендикуляр, проведённый к этой прямой из начала координат будет иметь обратный угловой коэффициент k₂ = -1/k₁ = -1/(-6/5) = 5/6 И эта прямая проходит через точку (0;0), т.е. в уравнении прямой y=ax+b b должно быть равно 0 Уравнение перпендикуляра y = 5/6x Точку пересечения найдём из совместного решения систему двух уравнений у = -6/5x + 6 y = 5/6x 5/6x = -6/5x + 6 (5/6+6/5)x = 6 (25+36)x = 6*30 x = 180/61, y = 5/6x = 150/61 И расстояние от начала координат √((180/61)²+(150/61)²) = 30/√61
Пусть основание призмы ΔABC: AB =BC =13 , BD =12 высота проведенная к основанию AC Если только одна из её боковых граней квадрат вытекает, что это грань AA₁C₁C . Высота призмы равна : H = AA₁ = BB₁ =C C₁ = AC. Sпол =2*Sосн+Sбок =2*S(ABC) +(2*AB +AC) *H =2*1/2*AC*BD +(2*AB +AC) *AC= AC*BD+(2*AB + AC)*AC = AC(BD +2*AB +AC). Из ΔABD по теореме Пифагора : AD =√(AB² -BD²) =√(13² -12²) =√(169 -144) =√25 =5 . [√(13-12)*(13+12) =√1*25 =5. ] AC =2*AD =10 ( высота BD одновременно и медиана _ свойство в равнобедренном треугольнике ) Sпол =AC(BD +2*AB +AC); Sпол =10*(12 +2*13 +10) = 480 .
5y = -6x + 30
у = -6/5x + 6
перпендикуляр, проведённый к этой прямой из начала координат будет иметь обратный угловой коэффициент
k₂ = -1/k₁ = -1/(-6/5) = 5/6
И эта прямая проходит через точку (0;0), т.е. в уравнении прямой y=ax+b b должно быть равно 0
Уравнение перпендикуляра
y = 5/6x
Точку пересечения найдём из совместного решения систему двух уравнений
у = -6/5x + 6
y = 5/6x
5/6x = -6/5x + 6
(5/6+6/5)x = 6
(25+36)x = 6*30
x = 180/61,
y = 5/6x = 150/61
И расстояние от начала координат
√((180/61)²+(150/61)²) = 30/√61
Sпол =2*Sосн+Sбок =2*S(ABC) +(2*AB +AC) *H =2*1/2*AC*BD +(2*AB +AC) *AC=
AC*BD+(2*AB + AC)*AC = AC(BD +2*AB +AC).
Из ΔABD по теореме Пифагора :
AD =√(AB² -BD²) =√(13² -12²) =√(169 -144) =√25 =5 .
[√(13-12)*(13+12) =√1*25 =5. ]
AC =2*AD =10 ( высота BD одновременно и медиана _ свойство в равнобедренном треугольнике )
Sпол =AC(BD +2*AB +AC);
Sпол =10*(12 +2*13 +10) = 480 .
ответ: 480.