В прямоугольном треугольнике катет, лежащий против угла 30 градусов = 1/2 гипотенузы. Доказательство. Дано тр. АВС. Угол С- прямой Доказать: СВ = 1/2 АВ 1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг. 2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и
Проведем в равнобедренном треугольнике высоту из вершины треугольника на его основание.Высота в равнобедренном треугольнике является медианой,биссектрисой>высота делит основание на 2 равные части равные 36.Рассмотрим прямоугольный треугольник нам известна гипотенуза(она же сторона равнобедренного треугольника) и основание(оно же является половиной основания равнобедренного треугольника).По теореме Пифагора найдем неизвестную часть треугольника(она же высота в равнобедренном треугольнике) высота^2=39^2-36^2,высота=15 S=(a*h(a))/2=(72*15)/2=540 ответ:540
гипотенузы.
Доказательство.
Дано тр. АВС. Угол С- прямой
Доказать: СВ = 1/2 АВ
1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг.
2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF
Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и
S=(a*h(a))/2=(72*15)/2=540
ответ:540