Металический шар радиуса корень из 9 в 3 степени дм. переплавлен в цилиндр, боковая поверхность которого в 3 раза больше основания. Найдите высоту цилиндра.
Диагональ трапеции отсекает от нее равнобедренный прямоугольный треугольник, гипотенузой которого является меньшее основание трапеции,а катетами диагональ трапеции и боковая сторона АВ.
Угол трапеции В = 45°.
Из теоремы Пифагора найдём боковую сторону трапеции
с²=а²+в²
а=в, поэтому с²=2а²
20²=2а²
а²=400÷2=200
а=√200=10√2 см
Проведём из угла А высоту к меньшему основанию трапеции.Из полученного прямоугольного ΔАВН находим катет АН=h
В прямоугольном треугольнике ABC угол C =90° угол B=30°, AB=12 см, CD- высота.
а)Докажите, что треугольник ACD подобен треугольнику ABC, найдите отношение их площадей б)отрезки, на которые биссектриса угла A делит катет BC
Объяснение:
а)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. Значит ΔАСД подобен ΔАВС:, т.к. ∠Д=∠С=90 , ∠А=∠общий. Найдем коэффициент подобия к=АС/АВ, к=6/12, к=1/2.
Отношение площадей подобных треугольников равно квадрату коэффициенту подобия: S(АСД):S(АВС)=к² , S(АСД):S(АВС)=1/4 .
б)
Найдем стороны в ΔАВС :
СА=1/2 АВ по св.угла 30, СА=6.
СВ²=АВ²-СА² по т. Пифагора, СВ²=144-36=108, СВ=√108=6√3.
Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам:
300 см²
Объяснение:
Диагональ трапеции отсекает от нее равнобедренный прямоугольный треугольник, гипотенузой которого является меньшее основание трапеции,а катетами диагональ трапеции и боковая сторона АВ.
Угол трапеции В = 45°.
Из теоремы Пифагора найдём боковую сторону трапеции
с²=а²+в²
а=в, поэтому с²=2а²
20²=2а²
а²=400÷2=200
а=√200=10√2 см
Проведём из угла А высоту к меньшему основанию трапеции.Из полученного прямоугольного ΔАВН находим катет АН=h
AH=a*sinB=10√2sin45°=10√2*√2/2=5*2=10 см
S=(AD+BC)/2 ×AH=(20+40)÷2*10=300 см²
Задача:
В прямоугольном треугольнике ABC угол C =90° угол B=30°, AB=12 см, CD- высота.
а)Докажите, что треугольник ACD подобен треугольнику ABC, найдите отношение их площадей б)отрезки, на которые биссектриса угла A делит катет BC
Объяснение:
а)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. Значит ΔАСД подобен ΔАВС:, т.к. ∠Д=∠С=90 , ∠А=∠общий. Найдем коэффициент подобия к=АС/АВ, к=6/12, к=1/2.
Отношение площадей подобных треугольников равно квадрату коэффициенту подобия: S(АСД):S(АВС)=к² , S(АСД):S(АВС)=1/4 .
б)
Найдем стороны в ΔАВС :
СА=1/2 АВ по св.угла 30, СА=6.
СВ²=АВ²-СА² по т. Пифагора, СВ²=144-36=108, СВ=√108=6√3.
Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам:
СЕ:СА=ВЕ:ВА .
Пусть СЕ=х, ВЕ=6√3-х
х:6 =(6√3-х):12
6√3-х=2х
6√3=3х
х=2√3 т.е СЕ=2√3, ВЕ=6√3-2√3=4√3